

CS/IT Honours
Final Paper 2020

Title: Music Sharing in a Bandwidth Constrained Environment using a
Community Network

Author: Keegan White

Project Abbreviation: OVCONNECT

Supervisor(s): Dr. Hafeni Mthoko, Dr. Melissa Densmore

Category Min Max Chosen

Requirement Analysis and Design 0 20 15

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80 80

DEPARTMENT OF COMPUTER

SCIENCE

Music Sharing in a Bandwidth Constrained Environment using a

Community Network

FirstName Surname†
 Department Name

 Institution/University Name

 City State Country
 email@email.com

Keegan White
 Computer Science

University of Cape Town

 Cape Town South Africa
keeganthomaswhite@gmail.com

FirstName Surname
 Department Name

 Institution/University Name

 City State Country
 email@email.com

ABSTRACT

Data constraints shape the manner in which digital media is shared

and consumed. Musicians who do not have access to a reliable and

constant internet connection are adversely affected by global music

sharing trends as they do not have the means to upload their music

to large streaming platforms. There is a large concentration of

musicians facing these issues in Ocean View (OV), a low-income

area in Cape Town South Africa. The aim of this project is to

develop a music sharing platform that will be deployed on the local

community-owned network and consequently be free to use for

residences of OV. This music sharing platform will be

synchronized with a globally available consumer centred version of

the platform hosted on an Amazon Web Services server in order to

allow the musicians to reach a larger audience. This will offer the

musicians a way to promote themselves and gain a larger audience.

Musicians based in OV were consulted at the beginning of this

project to define a feature list, however, due to COVID-19 in-

person interviews were not possible. This meant all interviews had

to be virtual. As a consequence of this the sample size for the

interview process was small due to the data constraints the

musicians face. The interviews that were conducted reinforced the

need for the music sharing website and there was a great deal of

enthusiasm and excitement surrounding the project. The system

developed is docker based with a WordPress front end, a MariaDB

database and a python-based application programming interface

that enables the systems to interact with customized frontend

features that WordPress does not offer. The outcome of this project

suggests that conducting virtual human-centred design projects in

resource constrained environments is not a feasible approach.

CCS CONCEPTS
• Community Networks • Bandwidth Constraints • Database

Synchronization

KEYWORDS
Ocean View, iNethi Community Network, Music Sharing

1 Introduction

This project focuses on deploying a music sharing website on the

iNethi community owned network located in the low-income area

of Ocean View (OV) in Cape Town South Africa. The iNethi

network is a joint venture between academics at the University of

Cape Town (UCT) and OVCOMM Dynamic, which is run by OV

residents, referred to as ‘the directors’. As a result of the

management dynamic, the decisions made regarding the

infrastructure needed for the website, the features of the website

and deliverables created had to be acceptable to both parties.

1.1 Motivation and Aims

This project was proposed by members of the OV community as

they require a means to share their music with fellow OV

residents and those residing outside of OV. Traditional music

sharing applications and websites are not viable for OV-based

musicians and their fans that reside in OV as these applications

rely on a constant and reliable connection to the internet. These

individuals do not have access to this type of internet connection

as they face data constraints due to their economic standing and

the comparatively high cost of data in South Africa [3].

The aim of this project is to create the aforementioned music

sharing website that will allow local artists to share their music

with the people around them and people residing outside of OV in

a simple, cost effective and data-efficient way. The purpose of this

website is not only to encourage local content creation and

celebrate the local talent but stimulate the local economy by

providing the musicians with a way of making money and

marketing themselves online. This is accomplished by

incorporating social media style profiles where artists can

advertise themselves, accept donations and share contact details.

Additionally, their music is uploaded to an e-commerce shop that

allows users to purchase coupons to access restricted content or

download music free of charge.

1.2 Deliverables and Methodology

The deliverables of this project are two instances of the music

sharing website. One instance to be hosted on the servers in OV

and the other to be hosted by Amazon Web Services (AWS). The

AWS instance is accessible globally and requires a user to use

their own data. The instance hosted on the iNethi servers in OV is

zero-rated for anyone connected to the community network. These

two instances need to be synchronized, which included not only

synchronizing the databases but also the scripts used for front-end

and backend processes.

Initially the design and implementation phase of the project was

planned to be focused around co-design and rely heavily on user

involvement. However, due to the COVID-19 virus and the

restrictions put in place by the government, that limited human

interaction, it became difficult to recruit members of the OV

community. This was caused by the difficulty communicating

with them due to their data constraints. However, there was still

user involvement in the initial phase of the project, but not as

much as had been planned. This resulted in a waterfall

methodology to be adopted for the software development lifecycle

(SDLC). Reason being it was not possible to collaborate and

create iterations of the software based on user input in the

development phase. The project timeframe was short meaning that

an iterative approach to the SDLC was not viable.

The rest of the report is divided into 4 sections. The Related Work

section focuses on the research already done on the core issues

and topics that this project faces, mainly the means of internet

access in low-income areas, music sharing and bandwidth

constraints in low-income areas, as well as the outcomes of a co-

design project based on music sharing in OV done by previous

UCT students. There is also an exploration of global music

sharing trends. The Design and Implementation section outlines

the requirement analysis phase of the project and where this

information came from, how the system was developed in terms

of tech-stack and other details about features and how they are

organized and implemented. The Discussion section explores the

issues faced during development due to COVID-19 and the

dynamic between UCT and OVCOMM Dynamic, as well as how

to measure the impact of the project. Finally, the Conclusions

section specifies future work that could benefit the community,

the impact the website could potentially have depending on the

points made in the previous section and highlights the difficulty of

virtually co-designing during a pandemic in a resource

constrained environment.

2 Related Work

Music sharing in low-income areas in South Africa and the data

constraints faced by residents of these areas has been well

documented. Additionally, there has been vast amounts of

research into the significance of music sharing in low-income

areas, not only in terms of the opportunities it creates for the

artists, but the role it plays in creating communal identities and

breaking down the racial barriers faced in modern-day South

Africa. Global music sharing trends are also a well-documented

area of study, with numerous studies surrounding music sharing

platforms such as Spotify.

Additionally, there has been a previous attempt at a co-design

study done by UCT students with OV musicians that investigated

their ideal music sharing application. They wished to sell their

music, advertise and share their music both within and outside

OV, track interaction with their music and show their style with a

profile.

2.1 Mobile Data Usage in Low Income Areas

Mobile data usage in low income areas in South Africa is limited

due to the high cost of data relative to the income in these areas

and variable coverage, resulting in low quality connections [3, 4,

5]. Mobile internet connections are the main way in which the

internet is accessed in these areas as WiFi networks are not

readily available to the public [5].

More than fifty percent of South African households have a

monthly income of less than R1600 [3]. When compared to the

cost of data bundles it becomes apparent why people are faced

with bandwidth constraints.

Table 1. Data Plans from Mobile Operators in South Africa

[3]

Operator Option 1 Option 2 Option 3 Option 4

MTN 5MB 1-

day

voucher,

R4

20MB 1-

day

voucher,

R12

50MB 3-

day

voucher,

R25

300MB

5-day

voucher,

R85

Vodacom 20MB 1-

day

voucher,

R5

100MB

1-day

voucher,

R10

250MB

1-day

voucher,

R20

250MB

1-month

voucher,

R60

Cell C 20MB 1 -

day

voucher,

R3

100MB

1-day

voucher,

R13

100MB

1-month

voucher,

R25

300MB

1-month

voucher,

R60

Telkom 25MB 1-

month

voucher,

R8

50MB 1-

month

voucher,

R15

100MB

1-month

voucher,

R29

250MB

1-month

voucher,

R39

Bandwidth related issues result in the residents of low-income

areas having limited to no access downloading large files [6]. This

plays a major role in the limited use of streaming websites and

applications such as YouTube, [2, 3, 6, 7] leading to a different

manner in which media is consumed. Residents of low-income

areas prefer to download their media, given that it is only a few

megabytes, directly to their device so that they can listen to or

watch it as frequently as they want and not use data for the same

media consumption [7].

However, while downloading files has become the norm there are

further issues that come into play due to the limited storage space

on their devices [2]. This is due to the fact that most of the devices

used are predominantly low-spec smart phones [1, 2, 5, 6, 8]. This

means that the digital persistence of an artist’s music is important

as their fans may have to delete their music to free up storage

space, but then may revisit the website where they downloaded it

at another time to re-download the song.

2.2 Music Sharing in Low Income Areas

One of the biggest issues South African artists face is their

inability to share their music [9]. A web presence is believed to be

a way to level the playing field with established artists and a way

to reach new audiences [9]. Many artists believe it is more

important to expose people to their music than receiving money

for it [9]. This is due to the fact that they not only want to share

their message but expanding their audience will allow them to

have more live shows and get their music into stores, which many

artists in South Africa struggle to do [9].

Music sharing in low-income areas has historically been

dominated by Bluetooth and WhatsApp file sharing [1, 2]. There

has only been one attempt to facilitate music sharing in these

communities, which resulted in the development of a website

called KasiMP3. It was designed for use on feature phones with

data constrained users in mind [2]. It allows musicians to create a

profile, upload songs, videos, pictures and has many features of a

social media website [2]. However, musicians have started having

difficulty accessing the website, which is believed to be due to

latency issues [2]. In analysing the interviews done related to

KasiMP3, it became apparent that the social media features of the

website were not necessary, and the artists did not necessarily use

the picture and video features. These issues were driven by the

fact that both the artists and users faced bandwidth constraints.

Their main requirement was a website that created an

uncomplicated and data-efficient way to download music.

The use of Facebook is also a popular means of sharing music by

artists in South Africa, but this requires the use of a third-party

website for the downloading of the song, like the aforementioned

KasiMP3 or an alternative called Datafilehost, which will be

expanded upon below. The artist will create a post on their

Facebook profile and share a link to a website where people will

be able to go and download their song. Due to the fact that the

majority of these artists set their Facebook profiles to public it

becomes possible to search for their songs via Google and see

these posts [2]. This is an important factor in the searchability of

their music and offers the artist a digital presence which makes

them discoverable to invisible audiences, an audience that the

artist does not have a direct connection to [2]. However, the use of

Facebook to share music in low-income areas becomes

problematic due to the aforementioned data constraints residents

of these areas face.

Datafilehost is an anonymous file sharing website that offers an

online drop box which musicians can upload a file to without

logging in, thus reducing the data needed to use the website [2]. It

is not searchable, does not have a tagging process and does not

offer descriptions for the file uploaded [2] which emphasises the

importance of the use of public Facebook profiles to make the

music uploaded to this website accessible. Even with all these

issues the benefit of low data usage has made Datafilehost

extremely popular. Datafilehost also offers a download counter

which is important to the artists that use it; however, this has been

found to be inaccurate [2]. Additionally, the file will be deleted

from the website after 90 days of inactivity. When accessed from

a device with antivirus software there are warnings of malware

being present on the site [2].

2.3 The Significance of Music in Low Income

Areas

Beyond the research into the technology related side of music

sharing in low-income areas in South Africa, there has been

numerous studies that have highlighted its social importance to

these communities. There has been a focus on the Cape Town

Hip-Hop scene, which is fundamentally different to the

commercial Hip-Hop seen worldwide. It aims to challenge

gangsterism and the inequality present in the country [2, 10, 11].

This is done by emphasising the importance of morals and ethics

while highlighting the racial barriers that are still present in the

country.

Many themes present in this music are inspired by Steve Biko and

the Black Consciousness movement [2]. With musicians aiming to

uplift their communities and disseminate positive and

motivational messages.

Self-reflection, topical debates on Acquired immunodeficiency

syndrome (AIDS) and globalisation are extensively present in the

Cape Town Hip-Hop scene [11]. Artists aim to educate and

change the way society views these issues using their music as

their means of communication. Not only do artists tackle these

socio-economic issues but they aim to encourage their

communities to stay away from crime [10].

2.4 Global Music Sharing Trends

A general trend in the world at the moment is the increase in use

of music streaming platforms such as Spotify, Apple Music and

Deezer [14, 15]. The music world has moved away from

purchasing individual songs and albums online, to a streaming

model. This model is based on artists earning a certain amount of

money per stream of their music [15].

Streaming of music is seen as a substitute for permanent

downloads of music [15]. Globally consumers are moving away

from storing music on their phone and rather stream it as they can

consume whatever they want whenever they want without

worrying about storage capacity.

These streaming services are offered on either a limited free to use

basis or a premium version which the users pay a monthly

subscription for [14, 15]. These services are offered on both fixed

devices and mobile phones [14, 15], requiring an internet

connection as data is used every time a song is streamed.

2.5 Means of Internet Access in Low-Income

Areas

2.5.1 Internet Access via Phones.

Internet access is almost exclusively carried out using mobile

phones in low income areas [1, 5, 6, 7, 8].

2.5.2 Internet Access via Community Networks

Some low-income areas in South Africa also have access to

community WiFi networks which offer access to zero-rated

services and general internet access for rates that are lower than

mobile data rates.

The iNethi network in OV is an example of this. It was created to

not only offer members of the OV community access to cheaper

internet, but also encourage content sharing between the people in

the community in an area where access to data is limited [13].

Residents of OV have access to a variety of free services and can

browse the internet for twenty rand per gigabyte of data.

2.6 Insights Drawn from Related Work

There is a need for an application that allows data constrained

users in low-income areas to share and consume music, with the

special attention placed on mobile phone centred design. The

motivation for such an application is not only economic but social

in the sense that music in these areas can act as a medium for

change and education.

With data constraints in mind this application cannot be based on

a streaming model, like the conventional music sharing platforms

globally, and should instead be download based. However, one

factor that can be drawn from the modern music streaming trends

is the social media-based features that allow you to see what other

users are listening to as this could lead to users discovering new

artists. Additionally, the economic status of the primary users,

individuals living in low income areas, should be taken into

account. While generating income is an important factor for the

artists putting all the content behind a paywall will gatekeep a

large portion of the primary user group. Artists also consider

making a name for themselves more important than selling their

music as live performances are more lucrative and exposure will

lead to more of these. This could mean that, depending on the

artist, the sale of music is of secondary importance when

compared to the ability to share music more effectively.

With specific focus on the fact that this music sharing application

will be zero rated for the primary users on the iNethi network,

some features from KasiMP3, such as profiles and other social

media features could be included. It is also evident that a

download counter is a core requirement of the website.

3 System Design and Implementation

A waterfall model was chosen to structure the software

development life cycle (SDLC). The waterfall model is a linear

model in which a sequence of stages uses the output of the

previous stage as input [12]. The SDLC is divided into the

following stages: analysis, design, development, testing,

implementation and maintenance [12]. The maintenance phase is

not included in this project. The reason being that there was not

enough time to deploy the system and have it used for long

enough for any maintenance to be done.

This model was chosen as it was difficult not only to recruit

participants due to their data constraints and COVID-19, but also

challenging to stay in contact with them. This meant that an agile

model, which was the planned method, was not feasible as there

was no guarantee of being able to get consistent feedback from

participants during the development process, which is a core

aspect of the agile model [12].

Despite the difficulty engaging with prospective users the aim was

still to involve them as much as possible. This meant that the

analysis phase and testing phase was designed to incorporate them

in the form of interviews and user-based testing.

All interviews conducted and the steps taken to document these

interviews were approved by the UCT Ethics Committee with

approval identity number 16920045. The interviewees were sent a

consent form before interviews and informed consent was given

by all participants. As compensation for their time all participants

received twenty rand of airtime and a one gigabyte voucher for

the iNethi network. All interviews were conducted virtually, via

WhatsApp calls, due to the regulations the government had put in

place that restricted in person interaction.

3.1 Requirements Elicitation and Analysis

The requirement analysis phase of the project revolved around

interviewing prospective users, an OVCOMM Dynamic director

and the members of the UCT staff that are involved in the iNethi

network. These were the main stakeholders identified in this

project.

The pre-interview phase, the planning phase, involved generating

interview questions that were based on information gathered from

the research in section 2. These questions were reviewed and

validated during the planning phase by the project supervisor and

the OVCOMM Dynamic director. This ensured the questions

were appropriate and addressed all the important factors

surrounding music sharing and creation in OV. Information

gathered from interviews was integrated into future interviews in

order to judge its validity and significance.

3.1.1 OV Based Interviews

The OVCOMM Dynamic director that was interviewed has a keen

interest in music and was used as a point of entry into the music

scene in OV. He was tasked with recruiting participants for the

interview process. The participants that were interviewed

consisted of two full time musicians and a musician that made

music as a hobby. The musician that was a hobbyist was an avid

listener to local music and offered insights into what a listener

would want from the website.

3.1.2 UCT Based Interviews

The interviews with the UCT staff focussed on technology related

topics and were used to assess what was feasible in terms of

implementation. These occurred both pre and post interviews with

prospective users in order to make sure the deliverables and

milestones that were set throughout the project were acceptable

and feasible.

3.1.3 Tech Stack

Interviews with the UCT stakeholders helped shape the tech stack

used for this project and helped to identify the core complexities.

All software, except features that had to be run on the servers, had

to be contained within docker containers. The use of docker

containers was important as this is how the pre-existing system is

structured. The reason being that docker provides a repeatable

development, build, test, and production environment. This meant

that all software could be worked on locally, in a sandbox

environment and then seamlessly deployed on the iNethi and

AWS servers.

WordPress had to be used for designing the website as WordPress

does not require any coding experience to edit pages and

configure plugins. This means it would be easy for a resident in

OV with no programming knowledge to edit and adapt the

website front-end and its features as they see fit. The goal of the

iNethi project is to pass full ownership of all software on the

network to OV residents, so the use of WordPress was non-

negotiable.

The issue of synchronization between both websites was one that

was identified as a critical point of importance. Music uploaded

within Ocean View needed to be visible on the global instance of

the website while downloads and coupon generation also had to

be synchronized.

3.1.4 User Access to Technology

All three artists had smart phones and said that their fanbase and

the majority of OV residents did as well. Two artists had laptops

that were mainly used as storage devices. One of these artists also

pointed out that he faced storage issues, even though he had a

laptop, and wanted to make use of cloud storage but did not have

the data needed to upload his files. The artist without a laptop also

faced storage constraints.

While all three artists had access to a device that could connect to

the internet, one of the artists emphasised the fact that he, and

many of his peers, had extreme data constraints. Due to this he

would mainly use his data for WhatsApp. He did not use email

due to data restrictions and wanted to know if he could receive

notifications about his music’s performance on WhatsApp.. The

other two artists made use of email, Facebook and other social

media applications but did not have access to uncapped data

plans.

3.1.5 Technical Ability of Users

The OVCOMM director suggested the website features a help

page pre-populated with detailed explanations of the core

functionality of the website and how to make use of these

services. He indicated that this was necessary as the average user

will not make use of technology beyond WhatsApp messaging.

This meant that features of the website could not be assumed to be

intuitive. This was corroborated by the other participants.

3.1.6 Artist’s Current Music Sharing Methods

All three musicians agreed that the most common way of sharing

music was via WhatsApp groups and Facebook. One musician

was of the opinion that Facebook was a dying platform, so he and

his bandmates had stopped uploading their music there as it was

seen as a waste of data. This particular artist had his music on

SoundCloud and Spotify, but he had never listened to his music

there and did not have access to these applications due to data

constraints. His brother had set it up for him.

3.1.7 Ideal Features of the Music Sharing Website

All the artists, when prompted about features they would like to

see on the website, mentioned the need for a genre tagging

system, the need for a profile page so that they share their details,

an analytics page so they could track user engagement and a way

for users to preview their music.

3.1.8 Music Based Income and Income Generation

Possibilities

The full-time musicians emphasised that their main source of

income was from live performances. While they indicated that

they would like to sell their music, they did not think it was viable

for all music on the platform to be behind a paywall, specifically

when referring to their audience within OV. They believed that

the website would not be used if people had to pay for music as

they said the majority of the community struggles to meet their

everyday financial. This contrasted the director’s opinion as he

felt the most important feature of the website would be income

generation.

There was more interest in using the website to grow their name

and expand their audience. However, they were interested in a

donation feature, which was viable as they stated that all the

musicians they knew and the majority of people in OV had a bank

account.

Another idea that came up was a system that allowed them to sell

access codes to their music that is placed behind a pay wall. This

would replace their need to sell Compact Discs (CDs) at live

performances, which they said had become less lucrative over the

years as digital consumption of music became more prevalent.

3.1.9 Challenges Faced During the interview Process

Due to COVID-19 all contact with prospective participants and

interviews had to be conducted virtually. Recruiting participants

and maintaining contact virtually was difficult due to the data

constraints they faced. Many messages to musicians did not

deliver for days as they did not have data. This meant planning an

interview was difficult as the artist were not certain as to when

they would have data. As a result of this the possibility of

continuous user participation throughout the project was not

viable.

3.1.10 Final Features List

Following the interviews with all the stakeholders, the following

feature list was created:

• An upload page with genre tagging

• A profile system for musicians to share their details and

banking information for donations

• A coupon (access code) generating system

• An e-commerce style shop for the music to be displayed

in

• A music preview system

• An analytics system

• A help page with details on the website’s features

3.2 Design

With the information gathered from the background research and

interviews a feature list was created. This list was used to guide

the creation of design documentation, see Appendix A. During the

design phase it was decided that the two websites would differ

slightly. The AWS instance would not have the option to register

as a musician or upload music. This was done in order to make

sure that only OV musicians made use of the upload system.

3.2.1 Architecture Diagrams

There are two instances of the music sharing website. One hosted

by AWS and another to be deployed locally on the iNethi servers.

The architecture for both is almost identical with the only

difference being that the AWS server runs on Hypertext Transfer

Protocol Secure (HTTPS) requests while the local iNethi server

runs Hypertext Transfer Protocol (HTTP) requests, which will

soon be changed to HTTPS (see A.1.1 and A.1.2). Additionally,

the local architecture features a python-based application

programming interface (API), the system management API, that is

used to process user coupon requests.

All the docker containers are connected to a docker bridge

network, which allows the connected dockers to communicate

with each other. A HAProxy docker container is run as a reverse

proxy server on both servers. This takes in HTTPS requests in the

case of the AWS server, verifies and decrypts them and passes

them on to the WordPress docker container as a Hypertext

Transfer Protocol (HTTP) message. In the case of the local

network The HAProxy container routes HTTP messages to the

WordPress docker container or the system management API.

On both servers the WordPress container carries out the request

and returns a HTTP response to the HAProxy server, which is

then encrypted in the case of the AWS server and sent as a

HTTPS response back to the user. In the case of the local server

the process is the same except the response is sent in HTTP

format. Optionally the WordPress docker queries the connected

MySQL database, hosted in a MariaDB container, if data is

needed from it. All docker containers are mounted to local folders

on the server. This means even if the container crashes or is

restarted none of the data will be lost.

In the case that a request is made to the system management API

on the local server it will verify that the source of the request is

from the Uniform Resource Locator (URL) of the local website

and then carry out the request and send a response in HTTP

format to the user.

3.2.2 Use Case Diagrams

The music consumer and musician have access to different

features of the website. The musician can make use of all the

features of the website while a customer can only browse and

download music (see A.2.1). Whereas the musicians can upload

music, create a coupon generation pin and subsequently request

coupons (see A.2.2). The access to features is all based on the

user’s permissions which are generated at registration depending

on which registration form they fill out. The form to register as a

musician is not available on the AWS server.

3.2.3 Sequence Diagrams

The coupon generation process (see A.3.1) makes use of the

system management API to process user input and coordinate

coupon creation between the local and global server. The API

uses calls to the WordPress WooCommerce API to create the

coupon using information gathered from the local database, where

the product ID I stored for both the local and global product

instance.

The music upload process makes use of backend processes run on

the server (see A.3.2) to coordinate product creation between the

local and global server. These processes include updating the file

name, moving the file into a permanent location, syncing files

between the servers, reading from the database to get the user’s

submitted information and then using the WordPress

WooCommerce API to create the product locally and globally.

3.3 Development

3.3.1 System Configuration

The project development phase started with choosing the correct

docker images and setting up docker containers. This involved

creating a ‘docker-compose’ file that is invoked from the terminal

and starts and links the containers to the bridge network. The base

image of WordPress was chosen while the ‘mariadb/server:10.4’

docker image was chosen as it allows the local host to connect to

the docker container from outside of the docker bridge network.

This allows the localhost machine to query data from the

database. This is an important part of the product creation process.

Within the compose file the environment variables are set, such as

database users, passwords and the folders where the containers’

data will be mounted. Additionally, a custom PHP configuration

file was written for WordPress in order for files larger than two

megabytes to be uploaded as this the WordPress default.

There is a pre-existing HAProxy server container running on both

the servers the websites will be deployed on. This meant there is

no reference to the HAProxy in the compose file, but the

configuration file for the HAProxy had to be edited to route traffic

to the correct docker container.

3.3.2 Plugins

The following plugins were added to the website via the

WordPress plugin library:

• Code Snippets: stores PHP code that runs on the website

so that the code does not need to be added directly to the

current theme’s ‘functions.php’ file. This means the

theme can be changed and custom PHP code will not be

lost.

• Contact Form 7: a form generation plugin that was used

to create the music upload form and coupon processing

forms.

• Contact Form 7 CFDB7: forms created with Contact

Form 7 do no save the information that is submitted.

This plugin enables the data to be written to the

database.

• Ultimate Member: a plugin that creates social media

style features for the website. It manages the profiles;

the access different profiles have to tabs and creates a

searchable directory of musicians.

• WooCommerce: this is an e-commerce toolkit that

allows for product and coupon creation, however, only

the website owner can access these features.

3.3.3 iNethi Music Sharing Package

The scripts used to interact with the MariaDB docker container

and WooCommerce Store were added to the iNethi music sharing

python package (see A.4.1).

3.3.3.1 Database Manipulation

All processes that required reading or writing from the database

used the MariaDB python library. A JSON configuration file is

used to gain access to the database. Subsequent queries are run

using MySQL. The core functionality of this code is used to read

in information related to uploads, update the downloads table as

well as provide helper methods for the system management API.

Three tables were added to the default WordPress database. These

tables store coupon data, download data and mappings of the

AWS WooCommerce product IDs to the local WooCommerce

product IDs.

3.3.3.2 WooCommerce API

All processes that required entries into the store were done using

the WooCommerce python library. This required a secret and

public key to be generated from the WooCommerce plugin

dashboard. These were used, along with the URLs of the stores to

add products, create coupons and calculate the number of

downloads a song has. The same keys are used to access both

stores as the database and WordPress files were duplicated upon

the initial deployment.

This python script uses details from the database as well as details

that are embedded during file uploads to facilitate product

creation, coupon generation and to calculate the number of

downloads each song had.

User product creation is started when a user uploads a file via the

‘Music Submission’ page. They have to be signed in to do this.

This makes it possible to embed their username in their

submission, which is added to the product description and

attribute field. This is necessary in order to be able to track song

ownership. Additionally, when the song is uploaded there is a

check to see if the user has already uploaded a song with the same

name. If they have, the name is updated so that every song a

musician uploads has a unique name. This makes it possible for

the user to select the song they wish to create a coupon for at a

later stage. The product ID in the backend will be different for

each song, even if the name is the same, however the user will not

see this ID so unique names are necessary. However, different

artists can have songs with the same name.

The product creation process sets the download count of the song

to zero in the downloads table and enters the date and time it was

uploaded. Additionally, the genres the user has specified, and their

artist name is converted to unique IDs for the search and genre

tagging system.

Due to the fact that users can only upload songs while in OV, the

product creation file only exists on the local server. However, it

also adds an entry to the AWS product library. If both of these

actions are successful a JSON object is returned with the details of

both songs, this is verified by the script otherwise an error is

logged and saved to the server.

The invocation of product creation is done on the server when a

file is saved in the mounted folders as this indicates the song was

successfully uploaded. If it were triggered by the user submitting

the form on the front-end there is no way to guarantee the song

has successfully reached the sever. Additionally, this process was

not migrated to the system management API due to the fact that

the current local network runs on HTTP. This makes it easy for

someone to intercept the data sent to the API and change it with

ease due to the lack of encryption. With this being said all

messages sent to the AWS server use HTTP however by the time

they are sent they are already encrypted using aforementioned

secret key.

3.3.4 The System Management API

The system management API (see A.4.2) uses the Flask python

library to create a web application that is run in a docker

container. The library allows the creation of URL endpoints that

are used to invoke functions. By default, all Flask applications

restricts Cross-Origin Resource Sharing (CORS) so that the API

cannot be used by a domain outside the domain from which the

resources were served. To circumvent this the URL of the locally

hosted website was whitelisted within the Flask application.

When the user submits a pin creation form the API verifies that

they are a registered user and have not already created a pin. If

they pass these checks the user is sent a response verifying that

their pin has been assigned. This pin is hashed using multiple

rounds of the SHA-256 algorithm and then stored in the ‘users’

table in the database. This is a one-way hash so the user’s pin can

be verified if the original pin is submitted but it cannot be

recreated from the stored hash. The pin is needed as there is no

other way for the API to verify the user. The WordPress Plugin

used for user management hashes passwords before adding them

to the database. While these hashes could be used to verify the

user there is no documentation on the algorithms used. Although

the user needs to be logged in to send the coupon creation form,

the additional layer of security is added to protect the user’s

content in the case that a malicious attempt to create a coupon is

sent to the API.

When a user submits a coupon-creation form they submit their pin

and the song name that they wish to generate a coupon for. Their

username is embedded in this request in order to verify if they

uploaded the song. If their details pass the verification stage, then

the WooCommerce API is used to create a coupon for the

specified song. This requires the product ID to be retrieved from

both servers as they may be different. Once these are obtained, the

system generates a random 10-digit alphanumeric code that is

checked against pre-existing coupon codes and returns this to the

user. If the user did not enter correct details, they will be sent an

error message.

The system management API is also used for tracking downloads.

The WooCommerce API does not allow access to downloads on a

per product basis. Downloads have to be checked using the order

logs for both stores. When a song’s page is loaded an API call

occurs and the order logs are checked. Each time the download

counter is updated an entry is made in the ‘downloads’ table

specifying the date and time that this update occurred. The date

and time are checked every time the API call is made and if the

download count has not been updated within a thirty-minute

period then the order logs are checked.

Although there were multiple approaches taken to secure the API

the fact that the data is transferred by HTTP makes the data easily

susceptible to interception. The HTTPS features that are present

on the AWS servers are being migrated to the local network so

this issue will be short lived. Although security was the core

reason to keep product creation server side, there is no other

feasible way to facilitate coupon creation. Adding triggers to the

database to export a file with the request data to a locally mounted

folder was an option. However, this implementation took far

longer to process the requests as it required file reading and

writing as well as a cronjob to run in order for the coupon creation

process to start.

3.3.5 JavaScript Scripts

JavaScript scripts were written and embedded in the web frontend

to carry out API calls. Three scripts were written to send post

requests to the system management API. Another was written to

send a get request to a third-party API to verify musicians bank

details. The jQuery library was used for this.

When a musician submits their profile details to signup via the

‘Musician Registration’ tab an API call is made if they have filled

in their bank details. The ‘FreeCDV’ API is used to verify that the

user has entered valid details. A response message is then

displayed to them to indicate whether their details are valid or if

there is a mistake in their submission. If there is a mistake a

detailed error message is returned to them and they are told how

they can change their details.

Additionally, two separate JavaScript scripts were written to deal

with handling the coupon system. One script was embedded on

the ‘Create a Permission Pin’ page and another on the ‘Coupon’

page.

On the ‘Create a Permission Pin’ page a user enters a 5-digit pin

and a post request is sent to the system management API. The

afore mentioned processes, from section 3.5.4, are run by the API

and the response is displayed to the user.

Similarly, on the ‘Coupon’ page a post request is sent to the

system management API. The aforementioned processes, from

section 3.5.4, are run by the API and the response is displayed to

the user.

The final JavaScript script was written to update the download

counter displayed on a songs page. The song name and the

username of the uploader is sent to the system management API

when the page is loaded, and the aforementioned processes are

carried out by the API. The response is then returned, and the

counter is updated.

3.3.6 Cronjob File Management

Every minute a cronjob runs on the WordPress upload folder that

is mounted to the server. This job loops through each file in this

folder and carries out four processes. Firstly, the files have their

name appended with the date and time so that files uploaded with

the same name will not be overwritten. Once the files are renamed

the product creation script described in section 3.3.3 is run and

entries. The files in this folder are then moved to a different

directory as the default upload folder is cleared every twenty-four

hours. Finally, the files are synced with the AWS instance using

rsync and the secure shell file transfer protocol (SFTP)

3.3.7 Plugin Customization

PHP code was added, via the Code Snippets plugin, to remove the

required fields from the WooCommerce checkout page, such as

the address fields and payment details.

3.3.8 Difficulties Faced Due to the Tech Stack

Docker containers are designed to only share data and connect to

other containers connected to the same docker network. This

meant that the WordPress and MariaDB containers running on the

AWS server and the iNethi server were completely independent.

Additionally, the websites have a different feature lists which

made the synchronization processes difficult as they could not be

direct copies of each other.

Another issue at hand was running scripts on the server when an

action was carried out on one of the websites. Since the

WordPress image is built to run as a standalone system only

interacting with other containers sharing its bridge network it is

also difficult to run a script within the container and communicate

with the host machine. This problem was solved by creating the

system management API that runs in a separate ‘python-3.8’

docker container.

3.4 Testing

All the test detailed below were carried out in the development

environment.

There were two types of testing conducted; manual testing for

user interface (UI) features and automated tests for the API

features.

All automated tests were run using Postman. Postman is a tool

that allows API calls to be tested by entering the relevant data and

creating a post request, in this case, that is sent to the relevant API

URL. Tests are then run on the response data using JavaScript and

the output is saved as JSON to a local directory.

While this was used to test the backend code, manual tests were

used to check whether the UI based responses were displayed

correctly based on input. These manual tests were conducted on

both a computer and a mobile phone due to the fact that the

majority of the target user group will be using phones to access

the website

Tests for the following project specific processes were created and

run:

• The song upload to product process

• The coupon pin creation process

• The coupon generation process

• File and database syncing between the two website

instances

• The bank details check process

• The song downloads indicator

3.4.1 Song Upload and Product Creation

Song uploads are a multi-part process that rely on server side and

front-end processes. Due to the fact that the music submission

page requires a user to be logged in, nonce verification and cookie

verification it was a difficult process to get Postman to

successfully send an acceptable post request to this page. This

testing process failed and was subsequently tested manually. Built

in functions throughout the ‘create product’ process display error

messages to the docker logs and save errors to log files in the

mounted folders on the server. This meant it was possible to

upload songs and verify if they were successfully processed.

Additionally, the store could then be manually checked for the

song and a download could be attempted from both stores. This

process was successful.

3.4.2 Coupon and Coupon Pin Generation

The user pin creation and coupon generation process were tested

with linked tests that were run using the ‘Runner’ Postman feature

that runs a set of tests in a specified order. The following tests

were run in this order: registering a pin with an existing user

passes, the user from the last test tries to add a pin and gets a

failure response, the previous user then creates a coupon for a

song they uploaded which passes, that user then tries to create a

coupon for a song they did not upload and it fails and finally the

same user tries to create a coupon for a song with the incorrect pin

and it fails. Additionally, a blank post request was sent the API

which failed correctly.

All of the above tests, except the last one as it is not possible to

send a request without a username, were carried out manually to

test the UI based responses and they all passed.

3.4.3 Database and File Sync between Instances

The database syncing occurs when the WooCommerce API calls

are made. If the API call is successful, then the database has been

successfully updated. This means that any failed attempts to

synchronize the database would be added to the error logs. During

the testing period there was no errors added to the log.

The file synchronization process is carried out using rsync which

keeps error logs if a synchronization fails. However, because the

synchronization is carried out in the files’ permanent location this

means that if the synchronization fails on one occasion the file

will be synchronized on the next call. This means that the only

way that this process will ever fail is if the connection to the AWS

server is permanently severed or if the cronjob stops running.

3.4.4 Bank Details Check

This was tested with Postman and manually. The Postman tests

involved entering incorrect bank details, bank details missing

fields and then correct bank details. These were all sent to the API

using get requests and the responses for all tests displayed the

correct output.

The manual tests were used to see whether the UI displayed the

correct messages based on the details entered. All these tests

passed.

3.4.5 Song Download Counter

The songs download counter was tested using Postman and tested

manually. The manual checks verified that the correct number was

being displayed on the UI. The following Postman tests were run:

querying the downloads for a newly uploaded song, querying the

downloads for a song multiple times within a thirty-minute period

and querying a song that had been downloaded a known amount

of time. All these tests passed.

3.5 Implementation

3.5.1 Test Environment

All features were developed using a local environment that synced

with the AWS sandbox server that iNethi projects are tested on.

The local environment as well as the AWS server mirrored the

production environment. HTTPS was used on the AWS server

while HTTP was used on the local machine to make sure the API,

along with all the other processes could function even with the

different communication methods.

3.5.1 Deploying to Production Severs

The deployment onto the local iNethi server was unsuccessful and

resulted in the inability to conduct the planned user testing. While

the AWS environment deployment was successful, the

deployment on the local servers failed due to the libraires used for

the backend processes, specifically the MariaDB python library.

Although there is a stable release for the operating system the

server runs it was not possible to get it to install and configure

properly. This meant that there was no way to process song

uploads. The front end, databases and API were all successfully

launched on the local server, however, due to the core feature of

the system not functioning the website has been taken down.

However, successfully launching the website on the local server

would only take a small revision in the code base. The system

management API could be extended to incorporate all the

database functions and WooCommerce API functions with very

few changes necessary. The architecture of both systems would

not need to change in this process and no changes would need to

be made to the AWS code base as it was deployed successfully.

4 Discussion

While the intended co-design aspect of this project was not

possible to carry out as planned, there was still valuable input

gained from artists in the virtual interviews. Additionally, the

aforementioned difficulties communicating with artists did limit

the sample size of OV participants. However, the information

gathered from participants aligned with the insights drawn from

background research indicating that the feature list and direction

of the project was appropriate and representative of what artists in

OV want.

That being said, it is important to note that the ideal deliverable

was not created as there is no way to purchase songs directly off

the website, the analytics page was replaced with a download

counter on each product page and there is no way to preview

music. This was not only due to time constraints, but also the way

in which OVCOMM Dynamic is run. There was no viable way to

create a central bank account to process card payments through, as

there was no one that would be able to monitor. This means that

the only financial compensation artists can receive for their music

is through the coupon system. However, the artists did not put

financial compensation at the top of their priority list, so this set

back does not severely affect the impact this system can make.

Additionally, features such as WhatsApp notifications were not

feasible due to the cost involved in deploying a system like this.

The WhatsApp API is not free to use and as such a private

company would have to be employed to develop and maintain a

system like this.

While the deliverable was not the embodiment of all the artists

requirements, if it is maintained and it becomes popular it has the

ability to fulfil their core needs and provide them with a platform,

they can use to share their music without the hinderances of

bandwidth constraints.

In light of the unsuccessful deployment to the local server there

are a number of lessons that can be drawn from this process.

Despite the security concerns of hosting an API over HTTP, it is a

safer option to develop dockerized APIs when working on the

iNethi server rather than rely on the server to run backend

processes. Especially with the knowledge that the system will be

changed to HTTPS in the future. Additionally, there are socially

based lessons that can be taken from this process. The project’s

supervisors warned of promising any potential users anything in

terms of deliverables in case there was an issue at any point in the

project that hindered deployment. This advice was adhered to

throughout the process and while the implementation of the final

deployment is achievable with the a few adjustments to the code

base, the interviewees were not left disappointed by false

promises. This is a valuable lesson that can be applied to all

research projects in which the participants are heavily invested in

the outcomes.

5 Conclusions and Future work

Conducting a user-centred project during the early stages of

COVID-19 was extremely challenging. This coupled with the fact

that virtual interviews were difficult to organise due to the

potential users’ bandwidths constraints meant that there was a

heavy reliance on input from a small sample group. Although the

participants feedback aligned with previous work it became clear

that research that involves bandwidth constrained participants is

heavily reliant on the ability to break virtual boundaries and

interact with them in person. There was difficulty establishing

lines of communication due to these factors so even incentivising

participation, in the form of airtime and data, was not successful.

Over and above this it is important to contextualise research and

understand the social dynamic at hand. This was evident by the

fact that musicians would prefer to have their music freely

accessible due to the financial restraints their fans face rather than

placing it behind a paywall. A sentiment that was not shared by

other stakeholders in the project that thought that economic gain

would be at the top of the priority list for OV musicians.

With this being said it is also important to note that this system

has the potential to introduce the musicians’ work to an audience

outside of OV in a way that was previously not possible. This in

itself is reason to develop the system further and deploy it

successfully.

The majority of the musicians requirements have already been

met by the current system, however, future work would include

dockerizing the product creation process so that the system will

run on the iNethi local server, adding a separate analytics page for

each artist and allowing the artist to edit and update their songs in

the shop. All of these features would require small additions to the

existing API as the core functionality is already present.

Additionally, a way to automate the handling of the error logs

would make the system more efficient.

ACKNOWLEDGMENTS

I would like to thank my supervisors Dr. Hafeni Mthoko and Dr.

Melissa Densmore for their support and guidance throughout my

research. I would also like to thank Dr. David Johnson for his

guidance and help developing my system.

REFERENCES
[1] A. Schoon. 2014. Digital hustling: ICT practices of hip-hop artists in

Grahamstown, Technoetic Arts a Journal of Speculative Research, 12

(2014), 207-217. DOI: 10.1386/tear.12.2-3.207_1

[2] A. Schoon. 2016. Distributing hip-hop in a South African town: from the

digital backyard studio to the translocal ghetto internet. In Proceedings

of the First African Conference on Human Computer Interaction, 104-

113. DOI: https://doi.org/10.1145/2998581.2998592

[3] A. Phokeer, M. Densmore, D. Johnson, and N. Feamster. 2016. A First

Look at Mobile Internet Use in Township Communities in South Africa,

ACM DEV '16: Proceedings of the 7th Annual Symposium on Computing

for Development., 15 (2016), 1-10. DOI:

https://doi.org/10.1145/3001913.3001926

[4] A. Phokeer, M. Densmore and D. Johnson. 2016. Characterisation of

Mobile Data Usage in Township Communities, Proceedings of Southern

Africa Telecommunication Networks and Applications Conference, DOI:

10.13140/RG.2.2.36137.80486

[5] S. Hadzic, A. Phokeer and D. Johnson. 2016. Townshipnet: a localized

hybrid TVWS-WiFi and cloud services network, International Symposium

on Technology and Society., 1-6.

[6] I. de Lanerolle. 2012. The New Wave: Who connects to the Internet in

South Africa, HOW they connect and what they do when they connect.,

DOI: 10.13140/2.1.1391.6485.

[7] A. Schoon. 2014. Digital hustling: ICT practices of hip-hop artists in

Grahamstown, Technoetic Arts a Journal of Speculative Research, 12

(2014), 207-217. DOI: 10.1386/tear.12.2-3.207_1

[8] T. Kreutzer. 2009. Assessing cell phone usage in a South African

township school, Int. J. Educ. Dev. Using Inf. Commun. Technol., vol. 5,

no. 5 (2009), 43–57.

[9] G. Pritchard and J. Vines. 2013. Digital Apartheid: An Ethnographic

Account of Racialised HCI in Cape Town Hip-Hop, Conference:

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, 2537-2546. DOI: 10.1145/2470654.2481350

[10] H. Becker and N. Dastile. 2008. Global and African: exploring hip- hop

artists in Philippi Township, Cape Town, Anthropology Southern Africa,

31:1-2, 20-29. DOI: 10.1080/23323256.2008.11499960

[11] D. Marco. 2011. Rhyming with “knowledge of self”: the South African

hip-hop scene's discourses on race and knowledge, Muziki, 8:2, 96-106,

DOI: 10.1080/18125980.2011.631303

[12] S. Balaji and M Sundararajan Murugaiyan. 2012. Waterfall Vs V-Model

Vs Agile: a Comparitive Study on SDLC, International Journal of

Information Technology and Business Management, vol. 2, no. 1 (2012)

26-29.

[13] M. Lorini, M. Densmore, J. David S. Hadzic, H. Mthoko, G. Manuel, M.

Waries and A. van Zyl. 2019. Localize-It: Co-designing a Community-

Owned Platform, Locally Relevant ICT Research, 1-15. DOI:

10.1007/978-3-030-11235-6_16

[14] L. Aguiar and J. Waldfogel, 2017. As streaming reaches flood stage,

does it stimulate or depress music sales?, International Journal of

Industrial Organization, Volume 57, 278-307, DOI:

https://doi.org/10.1016/j.ijindorg.2017.06.004

[15] L. Aguiar. 2017. Let the Music Play? Free Streaming and its Effects on

Digital Music Consumption. Information Economics and Policy, volume

41, 1-14. DOI: https://doi.org/10.1016/j.infoecopol.2017.06.002

[16] S. Bhattacharjee, R. Gopal, G. Lawrence Sanders. 2003. Digital music

and online sharing: software piracy 2.0?, Communications of the ACM,

Vol. 46, No. 7, 107-111, DOI: 10.1145/792704.792707

[17] V. Setty, G. Kreitz, R. Vitenberg, M. van Steen, G. Urdaneta, and S.

Gimåker. 2013. The hidden pub/sub of spotify: (industry article). In

Proceedings of the 7th ACM international conference on Distributed

event-based systems (DEBS ’13). 231–240. DOI:

https://doi.org/10.1145/2488222.2488273

https://doi.org/10.1145/2998581.2998592
https://doi.org/10.1145/3001913.3001926

Appendices

A Software Design Documentation

A.1 Software Architecture Diagrams

A.1.1 AWS Cloudlet Server

A.1.2 Local Cloudlet Server Architecture

A.2 Use Case Diagrams

A.2.1 Music Download

A.2.2 Song Upload and Coupon Generation

A.3 Sequence Diagram

A.3.1 Coupon Generation

A.3.2 Music Submission

A.4 Class Diagrams

A.4.1 iNethi Music Sharing Package

A.4.2 System Management API

	Title: Music Sharing in a Bandwidth Constrained Environment using a Community Network
	Author: Keegan White
	Project Abbreviation: OVCONNECT
	Supervisor(s): Dr. Hafeni Mthoko, Dr. Melissa Densmore

