
Programming Education: Using the Raspberry Pi and games to
teach programming

Martin D Flanagan
University of Cape Town

Rondebosch, Cape Town, South Africa
FLNMAR011@myuct.ac.za

ABSTRACT
Programming can be really difficult to learn, given that you need to
learn a programming language and programming constructs at the
same time. Most, if not all first year Computer Science students are
forced to take a course in programming. Students can often find
it difficult to learn to program as some of them would not have
taken a programming class before coming to a tertiary institution.
Students tend to lose interest very quickly and can become demo-
tivated when they find things too difficult and may even drop the
course or major. Games are often thought to be a form of enter-
tainment, but it can be incorporated into projects to make it more
fun and engaging. It can also be used as a form of motivation (as
an incentive). Microcontrollers are quickly becoming a part of our
lives, with all these smartly connected devices which we can moni-
tor with a single app on our phone, to having a smartly connected
home system. Microcontrollers, if used correctly, can also be used
to enhance a student’s learning experience. This literature review
aims to find ways to make learning programming more creative
and intuitive for these first year students.

CCS CONCEPTS
• Applied computing → Interactive learning environments;
•Hardware→ Sensor devices and platforms; Sensor applica-
tions and deployments.

KEYWORDS
Computer Science, Education, Games, Raspberry Pi, Programming,
Python, Panda3D, 2D and 3D programming
ACM Reference Format:
Martin D Flanagan. 2020. Programming Education: Using the Raspberry
Pi and games to teach programming. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Computer Science is a huge field and is still growing, as such,
many students enroll in these courses to take advantage of the fact
that programming is a good skill to have and will most likely be
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

needed inmost jobs today. Most of the students who take a program-
ming course are Computer Science students, but the other students
are normally from other faculties which prescribe a programming
course for some of their students.

Ozoran et al. [14] says that programming is one of the subjects
that challenges students the most [2, 7, 14], this seems to be the
case with most of the literature and as Gomes et al. [9] mentioned:
“high failure levels are common in initial programming courses“. It
could be the case of the courses being too difficult, or the students
are not grasping the content as the lecturer(s) would expect them
to.

This literature review aims to look at the current ways that
students are learning programming, how they are taught and how
they learn through assignments and the relevant texts and also how
using games in the assignments engages the students and helps
them to learn the material. The various programming languages
which is taught in first year CS will also be looked at.

2 EDUCATION IN CS
The main focus of an introductory course to programming in com-
puter science is mainly to develop a student’s problem solving
ability [9], but this does not seem to be the case in the literature.
Fee et al. [6] notes that only a few students who take such courses
want to improve their problem solving skills and also that students
only develop an appreciation for problem solving later.

The requirements for these CS courses are normally critical
thinking, a general idea to problem solving and computational
thinking among others [6, 17]. A lot of the students do have these
skills, but still struggle learning programming.

For the most part, the students seem to struggle learning the
basic concepts because of its complexity [2, 14], ranging from the
basic ideas of variables to the complex idea of an array (or lists) and
loops. According to Ozoran et al. [14] these can become barriers
for learning programming. They also go on to say that this can also
be due to learning a high number of concepts in such a short time
and hints that maybe the courses need to span over a wider range
of time.

The students tend to learn more about the syntax than about
solving the problem [14, 17] and some go as far to say that they
worry more about getting the program to run and resorting to trial
and error [2, 14]. This defeats the purpose of learning the concepts
of the course.

One solution to this problem is using Scratch as the program-
ming language [14] and another solution could also be using the
Greenfoot environment [11] but both environments are a drag and
drop based environment (the code structures are already there in
pre-made blocks that just need to be dragged and dropped).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Martin D Flanagan

A good solution would be to use Problem Based Learning (PBL)
[6]. By doing this, we can set up the problems in such a way that
the students can relate their own experiences to the problem.

3 GAMES IN COMPUTER SCIENCE
EDUCATION

Using games as a form of programming education is not new, in fact
many students who enter university already have experience with
games [5, 12, 18], whether it be playing or creating them. Games
can be used to teach programming and can motivate the students
while they are creating and playing them [5, 7, 12, 18].

Vahldick et al. [18] states that there are two approaches used
when you include games in Computer Science education: creating
and playing games. The creation aspect boils down to coding a
small game to apply the programming concepts and in the second
approach, “the students play games to reinforce and practice con-
cepts and programming skills” [18]. They also discovered that the
genre of suitable game types would be puzzle games, games where
simulation is involved and strategy games among others.

At the University of Denver [12], they offered a Game Develop-
ment undergraduate degree where they taught the basics concepts
of Computer Science (CS) in the first quarter by focusing on a game
(in their case which was a ball moving around on a screen). The
other 2 successive courses were also taught with a game focus. The
point of these courses was to keep the students engaged as well as
to help the students learn the concepts of CS. Looking at the results
of their surveys, the students enjoyed the game focus approach and
their retention of information through the year improved because
of this.

Another study [7] revealed that introducing a game-based ap-
proach increased the success rate of the students (and the pass rate)
and even decreased the amount of students dropping the course.
They also focussed on a different learning style where students
would interchange between acting as a designer and a programmer.
Their syllabus started teaching small constructs and the assign-
ments grew to become a more complete game application.

4 2D VS 3D PROGRAMMING AND THE 3D
ENGINES

It could be tough to decide whether a 2D (2-Dimensional) game
or a 3D (3-Dimensional) game is better in terms of how it can be
used to educate students. Ak et al. [1] states that an educational
computer game can be created in a 2D or a 3D format only. Ak et
al. [1] conducted a study where they compared different learning
environments (2D, 3D and traditional) to each other. They used the
same game mechanics across all the groups to keep the study as fair
as possible and they found that the learning gains for all 3 learning
environments were high and had no significant difference and in
the end, they noted that students are more likely to go for the 2D
games because the students value it more [1].

Coding a 3D game or even a 3D project can be difficult and one
might need a graphics engine to handle all the graphics processing.
A game engine provides abstraction by “hiding complex concepts
and providing powerful resources to the developers” [15].

Panda3D [10, 13] is an open-source, free-to-use engine that can
be used for 3D games. It uses both Python and C++ programming

languages [13] but it is simply Python code that is used on the
developing end. It is compatible with a large range of graphics
cards [10] and runs on Windows, Mac and Linux [10, 13, 15]. It is
also able to work with low-end display devices [10].

Alice is a 3D interactive graphics programming environment
which is built on the Python programming language with the aim
of making it easier for beginners in programming to develop 3-
dimensional environments [4]. The main idea behind Alice is that
programmers will be able to control and manipulate objects in a
virtual 3D environment with input from the mouse and keyboard
connected to the computer [4]. Cooper et al. [4] also answers an
important question about how much a programmer needs to know
about 3D graphics and animation, they found that only an under-
standing of the coordinate system and the spatial relationships
between the objects in the environment.

Dickson et al. [5] notes that when setting up a game development
course, among others, some things to keep in mind are:

• when choosing the game engine, it needs to have a good
developer community and documentation,

• the students need to be familiar with the programming lan-
guages used, and

• the game engine needs to support cross-platform develop-
ment.

Panda3D and Alice seem to tick all those boxes.

5 SINGLE BOARD COMPUTERS
Single board computers and microcontrollers have become a part
of our daily lives even if we do not know it. A lot of these boards
are being used to smartly ‘connect’ our devices in our homes.

The Arduino board is an example of a microcontroller. It has
an open source platform [3, 16] and it has a big user community
as well [16]. Rubio et al. [16] conducted a study where the board
was used to teach various concepts, from variables to loops and
also showed how engineering ’breadboards’ can be used together
with this board to teach these concepts. A loudspeaker was used
to teach the concept of arrays (lists), while conditions (if, if else
statements) were taught by capturing data from the light sensor
and the concept of looping was taught by continuously grabbing
information from a sensor and this was all done with a breadboard
and other electrical components connected to the Arduino board
[16]. Rubio et al. [16] also claims that the Arduino was designed
with the aim that artists and designers would use them.

The Raspberry Pi (RPi) is a “low-cost, credit card sized computer”
[8] that is just as powerful as a normal/standard computer and
can be used for programming purposes [8, 11, 19, 20]. It is also de-
scribed as “easily affordable for children” and a “program-oriented
device” [11]. It has been used to teach the course “Introduction to
the Internet of Things ” at Indiana University Purdue University
Indianapolis (IUPUI) [20]. There they used the Raspberry Pi and
some sensors to create multiple projects including a “Raspberry Pi
Stock Ticker”. Wirth et al. [19] notes that the RPi runs an operating
system, thus acting like a mini-computer, while the Arduino is just
a microcontroller.

Programming Education: Using the Raspberry Pi and games to teach programming Conference’17, July 2017, Washington, DC, USA

6 DISCUSSION
Programming can at some points be very taxing to learn [2, 14],
provided if the person has not come across the concepts before
or has not sharpened their critical thinking skills [6]. It’s not just
the concepts that need to be learnt, but also a whole new coding
language, in most cases, its syntax and all the other ‘nuts and
bolts’ needed to be proficient in the language. The students tend to
get caught up in learning the syntax of the language [14, 17] that
their problem solving ability might not be tested and they will not
improve this by doing so. This could also mean that possibly they
need to build on their problem solving ability by practicing the
concepts in a simpler programming language where they do not
have to worry about whether the program will run or not [2, 14]. So
instead of practicing these constructs in Java, they could possibly
do it in a programming language like Scratch or Python which
is simpler. By doing this it would mean that they build up their
problem solving ability and will have a better understanding of the
concepts as they will have more time to focus on it.

6.1 Games Discussion
One solution to the problem seems to be including games in the
course projects [7, 12] to help the students to retain the information
that they learn [12]. By including games in the projects of the course
it can not just motivate the students, but also allows them to see
what the code that they write can do and to check whether they
have made a mistake while coding. This may be something small,
but can have a big impact on how the students learn a programming
language.

Offering different projects would give the students room to
choose the project that they want and to allow more freedom and
room for creativity as one programming problem can have many
solutions that all end up with the exact same answer. This also
allows the students to explore multiple ways of problem solving
as they have the room to plan and decide how they will tackle the
problem.

6.2 Hardware Discussion
Another solution would be using a microcontroller or a single board
computer to educate the students. Both the Arduino board and
Raspberry Pi were very successful in helping students learn some
programming concepts [3, 8]. When comparing the two boards, it
should be noted that the Arduino is just a simple microcontroller,
while the Raspberry Pi runs its own Operating System (OS) [19].
While both boards offer connection to external devices and sensors,
the Raspberry Pi is the better board to have. Although both boards
are small enough to carry around and lightweight, the Raspberry
Pi has the resources needed for coding and the space needed to
install the necessary frameworks. The reason it stands out from
the Arduino is because it is a pocket-sized computer, not a simple
microcontroller.

6.3 2D and 3D Projects Discussion
Students prefer doing the game based assignments as opposed to
normal programming assignments [7, 12] and even though most
students would prefer doing 2D assignments [1], it makes sense
that at least one assignment includes some form of 3D coding

so that the students can challenge themselves. By having 2D and
3D assignments, the students will be able to see the effect that
their code has inside a virtual environment [4]. By adding an extra
dimension, we allow the user (students in this case) to see the virtual
environment from a different perspective.

Alice is ideal for new aspiring programmers in the sense that
it is easy to use and does not require much understanding of the
animation and rendering of the 3D environment.When compared to
Panda3D one will notice that Alice is meant to be used for teaching
the basic concepts of programming and 3D spaces, as Panda3D
can do much more than just simple shapes and 3D environments.
Keeping in mind that Panda3D is a game engine and Alice is a
graphics programming environment, they do fit the description
which Dickson et al. [5] was looking for in potential engines to use
in a game development course.

Both Panda3d and Alice are free to use but requires the developer
to know some Python programming, which makes it ideal for new
students learning to code. Both are also available cross-platform
which means that if it is selected, the students will not need a
specific operating system to use the engine and its framework,
which can make both good options to use as an engine.

6.4 Programming Language Discussion
While looking at the literature we have come across Scratch [11, 14],
Python[4, 10, 11], Java[4, 11] and C++ [12, 13, 15]. They are all good
programming languages, but there are big differences with each of
them. If we were to break down the famous ’hello world’ programs
for some of these, we see the following:

In Java:
public class ClassName{

public static void main(String [] args){
System.out.println("Hello world.");

}
}

In C++:
#include<iostream>
int main(){

std::cout << "Hello world." << std::endl;
return 0;

}

In Python:
print("Hello world.")

In Java the students will have to understand the constructs of a class
and a main method, while in C++ the concepts of a main method
and importing needs to be understood. With Python the students
can get coding right off the bat, which makes it less dificult for the
students to get started on Python coding.

It is evident that programming language of choice would be
Python as it is simple to learn and code and does not require that
students remember constructs of classes and objects. Java and C++
would not be ideal in this case as the students would have to
worry about classes, objects, inheritance and so on. The reason

Conference’17, July 2017, Washington, DC, USA Martin D Flanagan

why Scratch and the Greenfoot environment are not suitable to
use is because all the code is in a drag and drop structure and as
we want to focus on the students learning the CS programming
concepts and a programming language side by side, using this kind
of programming environment is not the best way to do it.

7 CONCLUSIONS
Programming can be difficult to learn and understood and while
the usual approach of learning by solutions can be effective, it
can also be boring and lead to students becoming discouraged and
uninterested in the material. Another problem is that due to the
content of the course being taught in such a short space of time,
students are already under a lot of pressure and because they have to
learn a programming language alongside the other course content,
they often become more focused on getting their program to run
than actually learning the concepts.

One solution is introducing PBL (Problem-Based Learning)where
the problems can be made so that students can relate to the problem
in some way, this will engage the students and hopefully encourage
and motivate the students to do the assignments and in turn will
learn the content better and retain the information that they learn
along the way.

Another solution is to integrate games into the courses such that
it can motivate the students as well as to keep the interest of the
students on the subject by giving them game-based assignments
where they can get visual feedback of what they are doing. They
can use the visual feedback to determine whether they are on the
right track to solving the problem as they will be able to determine
whether the correct thing is being done in the correct moments.
The games will also make the projects more fun and could also be
used as an incentive to complete the project (i.e. the student would
want to complete the game so that they will be able to play it and
have the achievement of completing it).

A third solution would be to incorporate microcontrollers or
single-board computers into the curriculum such that the program-
ming assignments include using some of the features of the boards
and by using some external parts like a breadboard with sensors or
potentiometers as an input source instead of the normal keyboard
input. External boards that plug into the boards could also be used
as a source of input, such as the Sense-Hat for the Raspberry Pi.

Both 2D and 3D game development are good options for educa-
tion based games, but given that students value 2D game projects
much more than 3D game projects, it might be a bit difficult to
justify having 3D game projects only. Having a list of 2D and 3D
projects that students can choose from will solve the issue, but it
should be fair on the students too (i.e. The student that takes a 2D
project has the same amount of work that needs to be done as the
student taking the 3D project).

Using a graphics engine makes the development so much easier
and can remove all taxing development from the rendering and
model generation, so that a developer can focus on the aspects of
the game instead of the sheer volume of code needed to render
these 3D and even 2D environments. Panda3D stands out as the
only one that fits this project’s needs at this time as Alice is not a
game engine so it does not meet the requirements for this project.

This project aims to use the Raspberry Pi with any external add-
ons needed and include some game-based assignments to teach
simple programming concepts.We also aim to motivate and engage
students in the coursework. Both 2D and 3D projects will be used
as it can give a different sense of perspective and Panda3D will
be the graphics engine used with Python being the underlying
programming language.

REFERENCES
[1] Oguz Ak and Birgul Kutlu. 2017. Comparing 2D and 3D game-based learning

environments in terms of learning gains and student perceptions. British Journal
of Educational Technology 48, 1 (2017), 129–144. https://doi.org/10.1111/bjet.12346

[2] VH Allan and MV Kolesar. 1997. Teaching computer science: a problem solving
approach that works. ACM SIGCUE Outlook 25, 1-2 (1997), 2–10. https://doi.org/
10.1145/274375.274376

[3] Arduino. 2020. Arduino - Introduction. Retrieved Apr 24, 2020 from https:
//www.arduino.cc/en/guide/introduction

[4] Stephen Cooper, Wanda Dann, Randy Pausch, and Randy Pausch. 2000. Alice: a
3-D tool for introductory programming concepts. In Journal of computing sciences
in colleges, Vol. 15. Consortium for Computing Sciences in Colleges, 107–116.
https://dl.acm.org/doi/pdf/10.5555/364133.364161?download=true

[5] Paul E Dickson, Jeremy E Block, Gina N Echevarria, and Kristina C Keenan. 2017.
An experience-based comparison of unity and unreal for a stand-alone 3D game
development course. In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education. 70–75. https://doi.org/10.1145/
3059009.3059013

[6] Samuel B Fee and Amanda M Holland-Minkley. 2010. Teaching computer science
through problems, not solutions. Computer Science Education 20, 2 (2010), 129–144.
https://doi.org/10.1080/08993408.2010.486271

[7] Maria Feldgen and Osvaldo Clúa. 2004. Games as a motivation for freshman
students learn programming. In 34th Annual Frontiers in Education, 2004. FIE 2004.
IEEE, S1H–11. https://doi.org/10.1109/FIE.2004.1408712

[8] Raspberry Pi Foundation. 2020. What is a Raspberry Pi? Retrieved Apr 24, 2020
from https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/

[9] Anabela Gomes and António José Mendes. 2007. An environment to improve
programming education. In Proceedings of the 2007 international conference on
Computer systems and technologies. 1–6. https://doi.org/10.1145/1330598.1330691

[10] Mike Goslin and Mark R Mine. 2004. The Panda3D graphics engine. Computer
37, 10 (2004), 112–114. https://doi.org/10.1109/MC.2004.180

[11] Michael Kölling. 2016. Educational programming on the Raspberry Pi. Electronics
5, 3 (2016), 33. https://doi.org/10.3390/electronics5030033

[12] Scott Leutenegger and Jeffrey Edgington. 2007. A games first approach to teaching
introductory programming. In Proceedings of the 38th SIGCSE technical symposium
on Computer science education. 115–118. https://doi.org/10.1145/1227310.1227352

[13] Carnegie Mellon University. 2020. Panda3D–Free 3D game engine. Retrieved
May 10, 2020 from http://www.panda3d.org/

[14] Dincer Ozoran, N Cagiltay, and Damla Topalli. 2012. Using scratch in introduction
to programming course for engineering students. In 2nd International Engineering
Education Conference (IEEC2012), Vol. 2. 125–132.

[15] Rafaela V Rocha, Rodrigo V Rocha, and Regina B Araújo. 2010. Selecting the
best open source 3D games engines. In Proceedings of the brazilian Symposium
on Games and Digital Entertainment, Florianópolis, Santa Catarina, Brazil. https:
//pdfs.semanticscholar.org/40ca/2f43ea66fde72040cce18dfed2718b7a45ba.pdf

[16] Miguel A Rubio, Carolina Mañoso Hierro, and APDM Pablo. 2013. Using ar-
duino to enhance computer programming courses in science and engineering.
In Proceedings of EDULEARN13 conference. IATED Barcelona, Spain, 1–3. https:
//pdfs.semanticscholar.org/c722/2f0f4b60735ac62bafd9fe17312657983526.pdf

[17] Damla Topalli and Nergiz Ercil Cagiltay. 2018. Improving programming skills
in engineering education through problem-based game projects with Scratch.
Computers & Education 120 (2018), 64–74. https://doi.org/10.1016/j.compedu.
2018.01.011

[18] Adilson Vahldick, António José Mendes, and Maria José Marcelino. 2014. A
review of games designed to improve introductory computer programming
competencies. In 2014 IEEE frontiers in education conference (FIE) proceedings.
IEEE, 1–7. https://doi.org/10.1109/FIE.2014.7044114

[19] Michael Wirth and Judi McCuaig. 2014. Making programs with the Raspberry PI.
In Proceedings of the Western Canadian Conference on Computing Education. 1–5.
https://doi.org/10.1145/2597959.2597970

[20] Xiaoyang Zhong and Yao Liang. 2016. Raspberry Pi: an effective vehicle in
teaching the internet of things in computer science and engineering. Electronics
5, 3 (2016), 56. https://doi.org/10.3390/electronics5030056

https://doi.org/10.1111/bjet.12346
https://doi.org/10.1145/274375.274376
https://doi.org/10.1145/274375.274376
https://www.arduino.cc/en/guide/introduction
https://www.arduino.cc/en/guide/introduction
https://dl.acm.org/doi/pdf/10.5555/364133.364161?download=true
https://doi.org/10.1145/3059009.3059013
https://doi.org/10.1145/3059009.3059013
https://doi.org/10.1080/08993408.2010.486271
https://doi.org/10.1109/FIE.2004.1408712
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
https://doi.org/10.1145/1330598.1330691
https://doi.org/10.1109/MC.2004.180
https://doi.org/10.3390/electronics5030033
https://doi.org/10.1145/1227310.1227352
http://www.panda3d.org/
https://pdfs.semanticscholar.org/40ca/2f43ea66fde72040cce18dfed2718b7a45ba.pdf
https://pdfs.semanticscholar.org/40ca/2f43ea66fde72040cce18dfed2718b7a45ba.pdf
https://pdfs.semanticscholar.org/c722/2f0f4b60735ac62bafd9fe17312657983526.pdf
https://pdfs.semanticscholar.org/c722/2f0f4b60735ac62bafd9fe17312657983526.pdf
https://doi.org/10.1016/j.compedu.2018.01.011
https://doi.org/10.1016/j.compedu.2018.01.011
https://doi.org/10.1109/FIE.2014.7044114
https://doi.org/10.1145/2597959.2597970
https://doi.org/10.3390/electronics5030056

	Abstract
	1 Introduction
	2 Education in CS
	3 Games in Computer Science Education
	4 2D vs 3D Programming and the 3D engines
	5 Single Board Computers
	6 Discussion
	6.1 Games Discussion
	6.2 Hardware Discussion
	6.3 2D and 3D Projects Discussion
	6.4 Programming Language Discussion

	7 Conclusions
	References

