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Figure 1: Distributed and parallel computing with Dask [8]

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
Distributed architectures; Data flow architectures; High-level
language architectures; • Software and its engineering → Mas-
sively parallel systems; Distributed systems organizing principles;
Software prototyping; Scheduling; • Information systems→ En-
terprise information systems.

KEYWORDS
dataflow, exascale, architecture, Python, visualisation, astronomy

1 PROJECT DESCRIPTION
The Cube Analysis and Rendering Tool for Astronomy (CARTA) [7]
is a tool designed to visualise and analyse data from the Atacama
Large Millimetre Array (ALMA) [2], the National Radio Astron-
omy Observatory (NRAO) [25], and the Square Kilometre Array
(SKA) [14]. As the image size of these modern telescopes has been
increasing rapidly over the past years, visualisation and analysis
have become very computationally expensive tasks and CARTA
aims to provide the needed scalability by utilising modern web
technologies and computing parallelisation.

With parallelism and scalability in mind, the current CARTA
back-end [9] is implemented as a multi-threaded imperative pro-
gram written in C++ [5], a compiled, widely-regarded highly per-
formant language. CARTA [9] uses several libraries, a key one
being the Common Astronomy Software Applications (CASA) [23]
library, which is maintained by a CARTA partner, the National
Radio Astronomy Observatory (NRAO) [25], and predominantly
implemented in C++ with an IPython interface.
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However, the design of computational models and software ar-
chitecture is shifting as we move into the exascale era, where com-
puters are required to perform a quintillion calculations per second
to cope with the increasingly large data sets that they are expected
to process. With High-Performance Computing (HPC) approaching
this exascale era, the NRAO is completely rewriting CASA and
considering the use of a dataflow model [13] implemented in an
interpreted language, Python, with the use of the Python Dask
library.

Jack Dennis [16] presented the first concept of the data-flow
architecture in 1974. This architecture differs from the traditional
von Neumann architecture in that a program counter is not used
to govern program flow. Instead, a firing rule specifies when in-
structions can execute, and this is based on the availability of the
instruction input data. Furthermore, the architecture does not allow
for global state storage, which eliminates side-effects [1].

Dask [11] is a flexible Python library for parallel programming,
which comprises dynamic task scheduling and parallel collections
like arrays and lists for larger-than-memory environments. Compu-
tations are structured as directed acyclic graphs called task graphs,
and these task graphs can be run with different schedulers. The
parallel collections are then built atop this infrastructure and based
on their single-threaded counterparts.

Inspired by the work being done by the NRAO, we investigate
a novel implementation of the CARTA back-end system with the
Python-based Dask dataflow environment through an architectural
re-design of the current system and the implementation of a set of
prototype components.
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2 PROBLEM STATEMENT
2.1 Research Hypothesis
This project aims to test the feasibility of implementing the CARTA
back-end functionality in a dataflow environment, and to provide
aid towards concluding if it is a viable solution to adapt to the
exascale way of computing.

Many astronomical computing libraries are being re-written to
handle exascale throughput for image processing and analysis, but
this does not have the same real-time requirements as interactive
visualisation tools such as CARTA, and there exists no clear guid-
ance on how best to scale out workloads that include this real-time
interaction.

Consequently, this workwill investigate the implications of using
a dataflow model for the CARTA back-end. The research hypothe-
sis is that it is possible to adapt existing dataflow tools to handle
exascale-throughput interactive visualisation workloads.

2.2 Project Objectives
A comprehensive set of documentation will be created to describe
the enterprise-grade systems architecture that would need to be
implemented should thismodel be rolled out at scale. This document
set comprises a systems engineering management plan, a set of use
cases and requirements, and component-level architectural design
specifications.

Furthermore, a set of back-end components will be prototyped
in the Python language [31] using the Dask library [11, 12] for
advanced parallelism and distributed computation. Other libraries
such as AstroPy [4, 26] and H5Py [10] will be used to abstract away
from domain-specific implementation details.

This new dataflow model will be compared with the current
imperative implementation, and a set of recommendations will be
made. The implications of this are broader than one implemen-
tation, however, as we aim to assess the validity of the dataflow
model using interpreted languages for various exascale-throughput
interactive scientific computations and visualisations.

3 RELATEDWORKS
The move towards exascale computation has opened up new possi-
bilities in the scientific community, yet new design paradigms are
needed to leverage the processing power of these new computers.
Shalf et al. [28] recognise that since it is mainly an increase in the
number of processing cores that is driving the increase in processing
power today, heterogeneity and concurrency are becoming increas-
ingly integral in our modern computing infrastructure. Modern
software architecture must be implicitly parallel and increasingly
resilient to traditional software errors [6].

The dataflow model of computation is one such architecture that
may satisfy this. Culler [13] originally describes this model of com-
putation as a "machine language for parallel machines", but it has
since been adapted as a software design pattern not dissimilar to the
pipe and filter model. Representing functions as nodes on a directed
acyclic graph and values as tokens that travel asynchronously along
the edges of that graph, we are able to schedule computation over
large heterogeneous compute clusters easily.

The dataflow model offers efficient use of fine-grain parallelism
for computation [21]. It offers implicit parallel task synchronisa-
tion, and does not constrain instruction sequencing apart from
enforcing data dependency constraints. It also tolerates memory la-
tency as it processes other instructions while waiting for a response
from memory, and thus has this advantage over the von Neumann
control-flow model as well [13]. Dataflow programs can be com-
posed effortlessly to form more extensive programs by connecting
the output of one graph to the input of another [15, 29], which
presents a way of dividing a program into distinct components.

Verdosica et al. [32] suggest in their position paper that the
dataflow model is indeed a valid approach for exascale computa-
tion, and many successful implementations of this nature have
been identified. Silva et al. [30] demonstrate the efficiency of this
approach for analysing large raw-data files over distributed sys-
tems, which is a primary use case for the CARTA system. Mao et
al. [22] successfully implemented a dataflow model for distributed
scheduling of jobs to process the exascale throughput from the
Square Kilometre Array. Zhang et al. [33] have demonstrated the
vast scalability of this approach using the Amazon Web Services
EC2 cloud compute infrastructure.

TheDask library [11] provides a dataflow environment for Python
and while it offers simple, powerful tools for parallel programming,
many similar tools exist. Mehta et al. [24] have evaluated how vari-
ous Python libraries perform when completing tasks on large-scale
image analysis systems. Dask is shown to have more scheduling
overhead than other Python libraries, Spark [3] and Myria [27],
when processing smaller, partitioned data sets. However, Dask does
outperform its competitors with a faster runtime on larger data sets
which is attributed to its more efficient pipelining and data caching
capabilities after overcoming the initial start-up overhead as seen
with the smaller data sets.

4 RESEARCH METHODS
4.1 Full Back-end System Design
The feasibility of a dataflow model [13] for the CARTA back-end
system will be evaluated by re-designing the back-end to follow a
dataflow model, opposed to the traditional von Neumann model
that it is currently based on.

The existing systemwill be analysed to collate the functional and
non-functional requirements of the new system. This will involve
examining various sequence diagrams for different operations of
the back-end system made available to us, as well as examining the
existing back-end codebase. The gathered requirements will then
be summarised in the form of numerous user stories. These will
be reviewed occasionally with the project supervisor and advisers
to ensure the user stories encapsulate all the use cases the current
back-end satisfies. This will also ensure that the non-functional re-
quirements of the system such as expected performance, scalability
and maintenance are also encapsulated by the user stories.

Various UML diagrams will be constructed to describe the struc-
ture of the new system, starting with the system overview and
narrowing down to the classes and objects required to provide the
functionality. The operation of the system will then be explained
using behavioural UML diagrams. We will seek assistance from the
project advisers on how to best construct these diagrams so they
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can be thorough and well-understood. The diagrams intended to
serve this purpose include, but are not limited to:

• Package diagram
• Class diagrams
• Use case diagrams
• Sequence diagrams

The system design will be regularly evaluated against the user
story requirements as a measure of progress and success, and the
design will be adjusted accordingly if need be. The system be-
haviour will be evaluated against the existing back-end operation
performance to measure if the new system provides any notable
improvements.

4.2 Prototype Component Implementation
To evaluate the research hypothesis, a number of components from
the CARTA back-end [9] will be prototyped in Python using a
dataflow framework. This framework is the Dask [11] library and
will be complemented with a set of popular libraries for scientific
computing [4, 10, 26]. The objective here is not to provide a pro-
duction back-end system to replace the current implementation,
but rather to demonstrate the efficacy of the dataflow approach for
this problem through the use of several component prototypes.

The set of components to be prototyped will be chosen from the
most computationally expensive procedures implemented in the
back-end, such that a meaningful set of conclusions can be drawn
regarding performance and scalability. These may include, but are
not limited to and are subject to change:

• Histogramming
• Profiling
• Gaussian smoothing
• Computing region statistics
• Swizzling
• Contouring

The current CARTA back-endwill be used for testing. This can be
accessed programmatically with a Python-based scripting interface
[18]. The purpose of these tests is to determine (i) that the output
of the prototype components is correct and (ii) if the prototype
components outperform the existing implementation. The former
will be answered by comparing the outputs of the existing and new
implementations, while the latter will be answered by timing each
implementation under various conditions and computing precisely
the performance difference.

This testing data will comprise randomly generated data as well
as real images sourced from the public domain, ranging from very
small images to larger-than-memory images. To assess the scalabil-
ity of the prototype components, the performance testing will evalu-
ate several deployment environments ranging from parallelism on a
single machine to distributed computation over a high-performance
cluster.

The prototyped components need not integrate with the current
CARTA front-end, as this would involve implementing a heavy-
weight message protocol that exceeds the scale of this project. In-
stead, demonstrations will be done with the use of Jupyter notebook
[20]. This allows code to be demonstrated in real-time with accom-
panying explanation, and libraries such as matplotlib [17] allow for

inline data visualisation. It is important to note that these visualisa-
tions are intended as a sanity check rather than an end feature of
these components.

Through thorough testing and evaluation of these components,
we will be able to assess the validity and performance of this model
for the primary use cases of the CARTA system.

5 EXPECTED PROJECT OUTCOMES
5.1 Project Impact
There has been much work showing the ability of the distributed
dataflow model to handle exascale throughput. What is not clear,
however, is the ability of this model to incorporate interactivity,
visualisation, and elements of computational steering into its work-
flow. Additionally, there have been many successful implementa-
tions of this model but not any holistic review of the impact of this
model for a broader problem domain.

For CARTA, this project will provide a proof of concept for a
new dataflow implementation of the back-end system. Prototype
components will provide a starting point around which a new full
back-end implementation can be built. The systems architecture
will guide this new implementation with design recommendations
as well as structural and behavioural documentation.

The success of this implementation could be used to advise
related work in different domains, especially for those systems
that share similar computational requirements. This problem is
not unique to the astronomical domain, and there may be many
scientific workflows that could benefit from a robust, distributed
architecture to handle large-scale interactive workloads.

5.2 Testing and Evaluation
The system design will be evaluated by how well the proposed
specification meets the functional and non-functional requirements
as stated in the user stories which will first be approved by the
project supervisor. The system structure will be compared to the
existing back-end codebase to ensure it clearly follows a different
computer model from the existing one and that the proposed system
can perform the same operations. To test if the proposed system
follows a dataflow model specifically, the system will be compared
to existing dataflow systems and will also undergo reviews by the
project supervisor and advisers to ensure this.

The success of the dataflow model applied to the system can
be further supported by systems engineering benefits that it may
provide to the system and its users. These benefits can include
system scalability and the ability for system components to be easily
composed into larger systems or replaced by similar components.
These aspects can prove valuable for future development on the
CARTA dataflow back-end.

The success criteria for the prototype component implementa-
tion is as follows:

(1) There exists a set of prototype components that mimics the
behaviour of certain CARTA back-end functionality using
Dask.

(2) The behaviour of the prototype components is shown to be
correct.
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(3) There exists precise metrics on the performance difference
between the prototype components and the current imple-
mentation.

(4) There exists a visualisation environment that demonstrates
these prototype components and their performance, with
sufficient explanation.

Note that this success does not depend on the new components
outperforming the current implementation, as reporting a precise
performance deficit would be no less valuable than reporting a
precise performance gain.

6 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

Since no testing or evaluation will be performed on human subjects,
there is no need to obtain ethical clearance for this project. All as-
tronomical imagery used for testing and evaluation will be sourced
from the public domain and thus raises no legal implications. All
research conducted will be made publicly available, and all software
developed will be open-source, released under the GNU General
Public License (GPLv3). The authors report no potential conflict of
interest.

7 PROJECT PLAN
7.1 Project Milestones and Deliverables
The project will run from 13 May 2020 to 19 October 2020. Over this
period, the following list of deliverables will need to be completed:

• Project proposal
• Python prototype code
• Data-flow system design documentation
• Project final paper draft
• Project revised final paper
• Project demonstration
• Project website
• Project poster

The full project plan for completing these deliverables can be
seen in the Gantt chart in appendix A.

7.2 Required Resources
Various advisers are needed to ensure that positive progress is made
on the project at all times. These include the project supervisor, Rob
Simmonds, to guide the aim and direction of the project to the team
as well as project advisers, Kechil Kirkham and Adrianna Pinska,
to provide guidance on the respective design and implementation
deliverables.

All team members will use their personal laptops or computers
to complete the required deliverables. A remote development envi-
ronment with access to all the relevant libraries and the CARTA
back end system will be required to develop and test the proto-
type components. A high-performance cluster of remote virtual
machines on the ilifu [19] cloud will be required to properly assess
the performance of Dask’s distributed functionality.

7.3 Anticipated Risks
The possible risks for the duration of this project and their respec-
tive management strategies are outlined in the risk analysis matrix

in appendix B. The probability of occurrence ranges from Rare (1)
to Common (5), and the impact of the occurrence on the project
ranges from Insignificant (1) to Catastrophic (5). While some are
fairly likely to occur, they do not pose a major threat to the pro-
gression of the project but merely a delay. Furthermore, the few
risks which could be catastrophic are improbable to occur.

7.4 Division of Work
Two aspects of the project have been described previously, namely
the system design section and the prototype component implemen-
tation section. Zainab Adjiet will work on the system design while
Dylan Fouché will work on the prototype component implementa-
tion.

While the two sections are closely related, the prototype de-
velopment work is not implementing the architecture defined in
the design documentation. Rather, this design documentation will
describe the architecture of a production system that could be de-
veloped around a successful set of prototype components. Thus,
the two sections can be worked on in parallel and evaluated inde-
pendently.
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A PROJECT GANTT CHART

B RISK ANALYSIS MATRIX

Risk Probability Impact Management Strategy
Team member falls ill, physically unable to con-
tribute to the project or leaves project team

2 4 Ensure there is an even workload amongst team members so
work can be more easily redistributed

Project supervisor is unable to guide the team
or is unhelpful

1 3 Ensure the direction of the project is clarified earlier in the
project and use guidance from project advisors well

Project advisors are unable to guide the team or
are unhelpful

1 3 Accept this risk and if it occurs ask project supervisor if they
can refer a different source of guidance

Team member unable to contribute to project
due to external issue such as laptop malfunction
or no internet connectivity

3 4 Have another means of working on the project and have backup
mobile data to ensure connectivity

Git repository on Github becomes corrupted 1 5 Keep local storage of code and documentation
Python Dask library becomes outdated or obso-
lete during the project

1 4 Accept this risk and if it occurs, discuss with project supervisor
on a new way forward with project aim

Requirements for the full back-end design
change frequently as the project progresses

2 4 Regularly check requirements with supervisor

Requirements are drafted incorrectly rendering
the subsequent design inadequate

4 2 Regularly evaluate incremental design against requirements
captured and make changes in necessary

Unable to properly test Dask.distributed on a
cluster of virtual machines

3 3 Follow up with supervisor regularly to ensure this can be set
up in due time, otherwise accept this risk
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