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Figure 1: Distributed and parallel computing with Dask [9]

ABSTRACT
The Cube Analysis and Rendering Tool for Astronomy (CARTA)
[7] is designed to visualise and analyse data from large modern
telescopes. The CARTA code base consists of a front-end web client
which receives processed information from the back-end server im-
plemented in C++. One of CARTA’s core libraries is being rewritten
to experiment with the Dask [12] Python-based data �ow environ-
ment to cope with processing the increasingly large data sets. This
project aims to investigate the implications of such a change for
the CARTA back-end system by conducting a backend re-design
using this same Dask environment.

The CARTA back-end implementation along with its most recent
Interface Control Document [8] were used to capture the require-
ments of the system and its various use cases. These use cases
were represented in use case diagrams (App. A) and used to con-
struct structural (App. B) and behavioural (App. C) UML diagrams
to represent the proposed system design. The structural diagrams
included package and design class diagrams and the behavioural
included sequence and data �ow diagrams.

The proposed design revealed that the data �ow model using
Python Dask leads to a simpler code base than the C++ system and
better server modularity. The Python language leads to simpler
code that is more comfortable to follow and Dask o�ers the bene�t
of executing operations over a scalable, possibly heterogeneous,
cluster ofmachines withminimal input from the programmer. Apart
from an expected performance decrease due to lack of optimisation,
the shift to the Dask data �ow environment for the CARTA back
end is a worthwhile venture and Dylan Fouche’s prototype lays
reasonable grounds from which to start.

CCS CONCEPTS
• Computer systems organization ! Parallel architectures;
Distributed architectures; Data �ow architectures; High-level

language architectures; • Software and its engineering ! Mas-
sively parallel systems; Distributed systems organizing principles;
Software prototyping; Scheduling; • Information systems! En-
terprise information systems.
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1 INTRODUCTION
The Cube Analysis and Rendering Tool for Astronomy (CARTA)
[7] is designed to visualise and analyse data from the Atacama
Large Millimetre Array (ALMA) [2], the Very Large Array [28], and
the Square Kilometre Array (SKA) [15] path�nders. CARTA uses
a client-server architecture to visualise the large images obtained
from these modern telescopes as they would be challenging to
process on personal computers or laptops. The data storage and
computation are handled by enterprise-class servers or clusters,
and the processed information is sent to the front-end web client
for visualisation (see Fig. 2).

Figure 2: CARTA Client-Server Architecture [6]
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The current CARTA back end [10] is implemented as a multi-
threaded imperative programwritten in C++ [5], a high-performance,
compiled language. CARTA [4] uses several libraries to provide its
functionality, a key one being the Common Astronomy Software
Applications (CASA) [25] library, which is maintained by a CARTA
partner, the National Radio Astronomy Observatory (NRAO) [27],
and predominantly implemented in C++ with an IPython interface.

As the image size produced by modern telescopes has been
rapidly increasing over the past years, visualisation and analy-
sis have become computationally expensive tasks. The design of
software architecture is shifting as High-Performance Computing
(HPC) moves into the exascale era, where computers are required
to perform a quintillion calculations per second to cope with the
increasingly large data sets that they are expected to process. With
the �rst Exa�op computer expected around 2020 [19], the NRAO
is exploring the use of a data�ow model [13] for the CASA library.
The prototype will be implemented in an interpreted language,
Python, with the use of the Python Dask library.

Dask [12] is a �exible Python library for parallel programming,
which comprises dynamic task scheduling and parallel collections
like arrays and lists for larger-than-memory environments. Compu-
tations are structured as directed acyclic graphs called task graphs,
and these task graphs can be run with di�erent schedulers. The
parallel collections are then built atop this infrastructure and based
on their single-threaded counterparts. Due to Dask’s task graph
structure, Dask programs are run in an implicit data �ow envi-
ronment which opposes the traditional von Neumann architecture
used in regular sequential programs.

The data �ow architecture di�ers from the traditional von Neu-
mann architecture in that a program counter is not used to govern
program �ow. Instead, a �ring rule speci�es when instructions can
execute, and this is based on the availability of the instruction input
data. Furthermore, the architecture does not allow for global state
storage, which eliminates side-e�ects [1].

Inspired by the work being done by the NRAO, an architectural
re-design of the current of the CARTA back end system was in-
vestigated using the Python-based Dask data �ow environment to
explore the implications of this shift to a data �ow model. Along-
side this re-design, a prototype was implemented by Dylan Fouche,
which was ofttimes used as inspiration for the design.

This report will �rst cover the related work done on the topic of
using the data �ow architecture over the traditional architecture.
The methods used to investigate the aims of this project will then
be explored along with references to various constructed diagrams
to explain the novel system design. The report will then cover
how the design was evaluated and the results of the evaluation.
Conclusions will be drawn on what the project �ndings imply for
implementation of the CARTA back end system using the Python
Dask data �ow environment.

2 RELATEDWORKS
Jack Dennis [17] presented the �rst concept of the data �ow archi-
tecture in 1974. While not as popular as its contrast, the data �ow
model can o�er advantages for parallel processing. Some aspects
of this model could also be combined with the traditional model to
form a hybrid with combined advantages. Since the �ow of data

determines the �ow of control in a data �ow model, the model can
be represented as a directed graph (see Fig. 3) with the nodes as
the instructions or functions and arcs connecting nodes as the data
dependencies. The input and output data that �ows along the arcs
are termed as tokens, and these tokens contain a tag that identi�es
the token’s destination node [1]. Not only is this representation in-
tuitive, but it can also present some advantages for program design
[31].

Figure 3: Simple Data-Flow Model of ~ = (0 + 1) � (1 ⇤ 2)

The data �ow model o�ers e�cient use of �ne-grain parallelism
for computation [22]. It o�ers implicit parallel task synchronisation,
and does not constrain instruction sequencing apart from enforcing
data dependency constraints. It also tolerates memory latency as
it processes other instructions while waiting for a response from
memory, and thus has this advantage over the vonNeumann control
�ow model as well [13]. Data �ow programs can be composed
e�ortlessly to form more extensive programs by connecting the
output of one graph to the input of another [16, 31], which presents
a way of dividing a program into distinct components.

Iannucci [21] describes the von Neumann and data �ow archi-
tectures as two extremes on a spectrum of architectures instead of
being independent of each other and speculates that there is a whole
family of architectures between these extremes as well as some
optimum point. A typical hybrid of these two models can be termed
as a coarse-grain data �ow model [31], and this groups instructions
into larger instruction blocks or grains instead of smaller tasks as
in pure data �ow. These grains are then scheduled using the data
�ow approach and the instructions within the grains are scheduled
using control �ow, which combines the data �ow’s exploitation of
parallelism and the control �ow’s e�cient execution [22].

When designing a multi-threaded program, a compiled language
like C or C++ will be favoured because this o�ers custom optimi-
sation according to the developer’s requirements. Traditionally, if
there were no critical performance requirements, interpreted lan-
guages were a good substitute as they o�er simplicity, and Python,
in particular, o�ers a variety of useful modules. More recently,
Python has attracted developers in the scienti�c community as
it allows them to build custom environments based on compiled
languages like Fortran, C and C++ [14]. Hence, Python is being
used more often in large-scale, parallel applications.
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The Dask library [12] provides a data �ow environment for
Python and while it o�ers simple, powerful tools for parallel pro-
gramming, many similar tools exist. Mehta et al. [26] have evaluated
how various Python libraries perform when completing tasks on
large-scale image analysis systems. Dask is shown to have more
scheduling overhead than other Python libraries, Spark [3] and
Myria [29], when processing smaller, partitioned data sets (see �g.
4. However, Dask does outperform its competitors with a faster
run time on larger data sets which is attributed to its more e�cient
pipelining and data caching capabilities after overcoming the initial
start-up overhead as seen with the smaller data sets.

Figure 4: Run time of analysing di�usion MRI data using
di�erent parallel computing Python libraries with varying
data size [26]

Since the computation and schedulers in the Dask environment
are separated, this allows the same unaltered task graph to be
computed on di�erent schedulers, each with its own performance
characteristics [12]. This gives developers the bene�t of being able
to choose how they want their program to execute. Dask schedulers
also operate dynamically, which means that the execution order
is determined during run-time rather than before [30]. Not only
does this cater for uncertain execution environments, but it also
minimises memory usage during execution. Scheduling overhead is
also minimised by maintaining state about the current computation
to select the next task quickly.

3 METHODS
3.1 Requirements Capturing
The requirements of the proposed system mirror the requirements
of the current CARTA back end system. These requirements were
mainly captured by reviewing an Interface Control Document for
the CARTA system [8], which mostly comprised sequence diagrams
for each use case of the system. Using this document, along with
the open-source CARTA Github repository [4], various use case
diagrams were composed to capture a high-level view of the system
and its requirements.

The use case diagrams, along with all other diagrams discussed
in the following sections, were constructed using the free, online
Diagrams.net tool [18]. First, a typical use case diagram was con-
structed with a CARTA client user as the focus actor of the diagram

to obtain system requirements from the user’s view. While some
subroutines for the use cases could be identi�ed, these subroutines
are the focus of the back-end design, so a second use case diagram
was created using the CARTA front end as the focus actor (Fig. 7).
This second diagram allowed a more in-depth look into the needed
functionality of the CARTA back-end system.

3.2 Static System Design
A package diagram, paying speci�c attention to modules used,
was constructed to depict how the back end should interact with
the existing front-end packages and what other packages would be
necessary for its functions. The diagram is based on Dylan Fouche’s
Dask prototype of the CARTA back end [20] and depicts the Python
modules that the back end needs to calculate a per-cube histogram.

After gaining a high-level view, a design class diagram was used
to narrow down on the classes and functionality within the back end.
Fouche’s prototype was used again as a base for the relationships
between the classes and some initial class functionality.

Both the package and class diagrams were then revised and re-
structured (Fig. 8) to take the full system functionality into account.
The CARTA Github repository [10] was used as a reference of how
the back end can be structured to support the full functionality and
inspiration was drawn from this to restructure the design.

3.3 Dynamic System Design
Data �ow diagrams show how data moves between entities and
processes in a system, and this can give the best representation of
the Dask data �ow environment. These diagrams provide a good
view of how the system should behave irrespective of the structure
of classes and entities; thus, they were constructed earlier in the
investigation. A zero-level data �ow diagram, commonly referred
to as a context diagram, was constructed for the histogramming
function of the CARTA system. Still focusing on this operation,
another two data �ow diagramswere constructed eachwith varying
levels or depths.

The �rst-level diagram depicts the movement of data with the
histogramming operation being run on a single computing node.
The second-level uncovers the Dask scheduler entity embedded
in the back end that orchestrates the operations on a set of Dask
worker nodes (Fig. 10). It was essential to show that processes
could run concurrently on these worker nodes and representation
for this was decided upon with the guidance of Kechil Kirkham, a
systems engineer at the Inter-University Institute for Data Intensive
Astronomy. Based on the second-level histogramming data �ow
diagram, a generalised second-level diagram was created (Fig. 11).
This diagram focuses on the interaction of the Dask scheduler with
individual worker nodes and shows how the �ow can be generalised.

Contrary to a data �ow diagram, a sequence diagram shows the
behaviour of the system paying speci�c attention to the execution
order of system interactions. A sequence diagram was constructed
(Fig. 9) to depict the �ow of the histogramming operation as it would
execute on the revised version of Fouche’s back end prototype
[20]. This sequence diagram expands on how the back-end classes
interact with each other to compare this to how the existing CARTA
back end [10] executes the same operation.

3



4

4 EVALUATION
Due to the software engineering design nature of this project, the
design could not be quantitatively tested in terms of speedup un-
less it were to be fully implemented; thus, the design underwent
qualitative testing. The design documentation itself was continu-
ously evaluated by Kechil Kirkham to ensure the proper design
documentation practises were exercised. The actual design, how-
ever, was evaluated against Dylan Fouche’s implementation [20]
and the existing CARTA back end [10] to identify any noticeable
di�erences.

The design itself was also evaluated against the requirements
captured from the existing system to note if there is any function-
ality missing or possibly functionality that cannot be added to the
data �ow design. The proposed system was checked for any signi�-
cant performance issues or bene�ts inherent of the design and if it
can be fully implemented using Python Dask.

5 FINDINGS AND DISCUSSION
5.1 Scope of Proposed Design
Use case diagrams can abstract the complexity of a system and
help focus the system design on operations that directly impact
the system user, ultimately making the system more proactive [24].
However, this simplicity makes it challenging to capture the interac-
tions between requirements as well as non-functional requirements
[23]. For this reason, the proposed design based on the use case
diagrams (Fig. 7) overlooks these types of requirements which may
exist for CARTA, leading to a substandard design.

Furthermore, the proposed system design structure in the re-
vised class diagram (Fig. 8) does not cover the full functionality
of the current CARTA back-end system due to time constraints.
The design can be intuitively extended, however, by following the
pattern of the back-end class structure and extending the classes as
necessary.

5.2 Server Component Modularity
The revised class diagram di�ers from the other based on Fouche’s
prototype [20] in that there exists more separation of roles in the
back end than all responsibilities laying on one Server class.

The server in the proposed design is only liable for receiving
messages from the front end and managing the Dask Distributed
cluster. All front-end messages will be handled in a Session class
which initiates the correct corresponding operation depending on
the incoming message. Once the operation is completed or runs
into an error, a response message will be constructed and passed
back to the front end. This operation �ow can make for a more
logical system structure which more closely mirrors the CARTA
back end implementation.

As established in the related works, data �ow models can be
inherently modular [16, 31], and this can be seen by how easily the
histogramming operation can be abstracted to any operation. The
Dask scheduler takes a function and the corresponding data as input
and uses the worker nodes to execute this function. The second-
level general data �ow diagram (Fig. 11) shows how the scheduler
would interact with each node in the cluster. This generalisation

will aid the modularity of the back-end system and minimise the
amount of code to be written for each di�erent operation.

5.3 Overall Code Simplicity
The proposed structure does not o�er any more bene�ts than the
current back-end structure, and if the shift to the Dask data �ow
environment is made, it will be the case of duplicating the existing
structure to Python. However, the dynamically-typed nature of
Python does allow for a more straightforward code base, especially
in the case of mapping message types to functions in a dictionary
(see Fig. 5). The methods in the Server class can stay relatively
simple, and there is no need for lengthy switch functions to cater
for each type of front-end message as in the CARTA back end.

Figure 5: Example of PythonEvent-MappingDictionary [20]

The simplicity of Python can o�er bene�ts in terms of system
development as well. It can make the code base more comfortable
to follow and thus easier to modify and extend if need be. In de-
velopment teams that can vary and change, this will also ensure
that a developer who is not accustomed to the CARTA system can
easily understand how it works compared to being introduced to
an intricate, well-developed C++ code base.

5.4 Distributed Environment and Scaling
The progressively more detailed data �ow diagrams for the CARTA
histogramming operation shows how well the operation can be
adapted to a data �owmodel. This viewmakes it easy to see how any
sub-process, or any process for that matter, can be run concurrently
by passing the data to another node or process. Furthermore, the
parallel combined fragment (see Fig. 6) in the sequence diagram
shows that there is a possibility for part of the histogramming
operation to be run concurrently as these operations only perform
data accesses.

The second-level data �ow diagram (Fig. 10) shows how the Dask
scheduler plays the role of initiating the operation on the cluster of
one-to-many Dask worker nodes. The histogram construction is
distributed across the cluster of worker nodes, and the scheduler is
responsible for assigning the tasks and data accordingly. While the
diagram does not show this, the scheduler can choose to assign dif-
ferent processes to di�erent nodes and the data would be gathered
again and sent back to the front end.

This diagram also depicts the operation as it would compute on
the cluster as a whole and abstracts from machine speci�cations of
the individual cluster nodes. In a typical control �ow environment,
the programmer is required to specify which process should run
on a which thread, as is the case with C++. Dask, however, handles
this duty entirely and need only be supplied the cluster of machines
to execute the operation over. Furthermore, this does not restrict
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Figure 6: Parallel Combined Fragment of CARTA Per-Cube
Histogram Calculation Sequence Diagram

the Dask cluster machines to any one type of machine speci�ca-
tion, and the back-end operations can potentially be executed over
heterogeneous clusters.

Dask can also allow for better scalability of the CARTA server
than what is currently used. The only way to scale the CARTA
server to account for increased performance requirements is to
increase the number of cores on the single server machine. This
method of scaling is not sustainable for the system as there exists
a limit to the number of cores a machine can consist of, and with
HPC approaching the exascale era [19], this limit may be surpassed
soon. This outcome can be avoided with Dask as it provides the
ability to scale computation over clusters of thousands of machines
[11], allowing the CARTA server to scale as necessary.

6 CONCLUSIONS AND FUTUREWORK
Shifting the CARTA back-end system to a data �ow model o�ers
the bene�t of code simplicity. The structure of the proposed system
is logical and can be easily extended to include the full functionality
of the current back end. The Python language itself leads to simpler
code that is easier to understand and follow than the current C++
code, which may make the code base easier to modify and extend
if need be.

The Dask data �ow environment with the Dask scheduler allows
the execution of CARTA operations to be generalised so that the
server need only pass the necessary function and data to the sched-
uler to execute the required operation. This generalisation adds to
the modularity of the server and allows for easy expansion of the
operation list with minimal code additions.

While other Python parallel libraries do exist, Dask proves to
outperform these libraries when applied to larger data sets. Dask
o�ers the bene�t of e�eciently executing operations over a scalable,

possibly heterogeneous, cluster of machines as it handles the distri-
bution of tasks and data with no extra e�ort from the programmer.

While the design itself o�ers no drawbacks, the shift to Python
from C++ may result in a notable performance decrease for some or
all CARTA operations as the CARTA system is already optimised
to perform these tasks. Nonetheless, the shift to the Dask data �ow
environment for the CARTA back end is a worthwhile venture. It
can provide many long-term bene�ts for the CARTA system going
forward, and Dylan Fouche’s prototype lays reasonable grounds
from which to start.

The structure of the current CARTA system is logical and ef-
�cient. Given more time, it would be preferable to examine the
CARTA code base further and draw more inspiration from the sys-
tem structure for the proposed design. The CARTA system could
also be further analysed for non-functional requirements so these
can be incorporated into the proposed system design.
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A REQUIREMENTS CAPTURING DIAGRAMS

Figure 7: Part of CARTA Front End Use Case Diagram Set
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B STATIC DESIGN DIAGRAMS

Figure 8: Revised CARTA Design Class Diagram
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C DYNAMIC DESIGN DIAGRAMS

Figure 9: CARTA Per-Cube Histogram Calculation Sequence Diagram
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Figure 10: CARTA Per-Cube Histogram Calculation Data Flow Diagram (Level 2)



Figure 11: CARTA Abstracted Data Flow Diagram (Level 2)
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