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• Data flow architecture differs from the 

traditional von Neumann architecture in 

that program flow is governed by the 

availability of the instruction input data.

• Modern HPC systems are expected to 

process data quicker to cope with 

increasingly large data sets and shifting to 

a data flow model can be a sustainable 

way forward for these systems.

Data Flow Who?

Figure 3: Performance test results showing compute times for CARTA and Dask

(lower is better)
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• We find that the shift 

to the Dask data flow 

environment for the 

CARTA back end 

may be a worthwhile 

venture.
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Figure 2: Data flow model 

of y = (a + b) - (b x c)

• The Cube Analysis and 

Rendering Tool for 

Astronomy (CARTA) is 

designed to visualise and 

analyse large scale 

astronomical imagery.

• The CARTA system 

consists of a front-end 

web client which 

receives processed 

information from the 

back-end server 

implemented in multi-

threaded C++ .
Figure 1: The CARTA interface

What is CARTA?

Objectives

To Data Flow or Not?

Zainab subjected the CARTA back-end 

to an architectural re-design following 

systems engineering best practices.

Dylan implemented a set of prototype 

back-end components to gauge their 

performance and scalability.
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Design Implementation

Using the Python Dask data flow environment, a data flow model 

is explored for the CARTA back-end system to investigate the 

implications of such a change.

• The proposed design revealed that using Python Dask leads to a 

simpler and easier to follow code base than the C++ system with 

better server modularity and potential for heterogeneity.

• The data flow model allows for scaling out to large distributed 

clusters of machines with minimal input from the programmer.

• Performance testing on the prototype components revealed that 

the data flow model would perform significantly better in the 

best case, and about the same in the worst case.

Figure 4: Data flow diagram showing how the Dask Scheduler handles 

distributing computation to the Worker Node cluster


