
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

• Data flow architecture differs from the 

traditional von Neumann architecture in 

that program flow is governed by the 

availability of the instruction input data.

• Modern HPC systems are expected to 

process data quicker to cope with 

increasingly large data sets and shifting to 

a data flow model can be a sustainable 

way forward for these systems.

Data Flow Who?

Figure 3: Performance test results showing compute times for CARTA and Dask

(lower is better)

We acknowledge funding from the National Research Foundation 

(NRF), the use of Ilifu cloud computing resources, and guidance 

from the Inter-University Institute for Data-Intensive Astronomy 

(IDIA) academics and engineers.

• We find that the shift 

to the Dask data flow 

environment for the 

CARTA back end 

may be a worthwhile 

venture.

Exploring a Data Flow Model for the CARTA Back-end 
System

CARTA Data Flow Prototyping

University of Cape Town

Computer Science Dept.

Email: dept@cs.uct.ac.za

Tel: 021 650 2663

Supervisor

Rob Simmonds

Co-Supervisors

Adrianna Pinska

Kerchil Kirkham

Team Members

Zainab Adjiet

Dylan Fouche

Figure 2: Data flow model 

of y = (a + b) - (b x c)

• The Cube Analysis and 

Rendering Tool for 

Astronomy (CARTA) is 

designed to visualise and 

analyse large scale 

astronomical imagery.

• The CARTA system 

consists of a front-end 

web client which 

receives processed 

information from the 

back-end server 

implemented in multi-

threaded C++ .
Figure 1: The CARTA interface

What is CARTA?

Objectives

To Data Flow or Not?

Zainab subjected the CARTA back-end 

to an architectural re-design following 

systems engineering best practices.

Dylan implemented a set of prototype 

back-end components to gauge their 

performance and scalability.

Acknowledgements

Design Implementation

Using the Python Dask data flow environment, a data flow model 

is explored for the CARTA back-end system to investigate the 

implications of such a change.

• The proposed design revealed that using Python Dask leads to a 

simpler and easier to follow code base than the C++ system with 

better server modularity and potential for heterogeneity.

• The data flow model allows for scaling out to large distributed 

clusters of machines with minimal input from the programmer.

• Performance testing on the prototype components revealed that 

the data flow model would perform significantly better in the 

best case, and about the same in the worst case.

Figure 4: Data flow diagram showing how the Dask Scheduler handles 

distributing computation to the Worker Node cluster


