CARTA Data Flow Prototyping Exploring a Data Flow Model for the CARTA Back-end System

What is CARTA?

- The Cube Analysis and **Rendering Tool for** Astronomy (CARTA) is designed to visualise and analyse large scale astronomical imagery.
- The CARTA system consists of a **front-end** web client which receives processed information from the back-end server implemented in multithreaded C++.

- The proposed design revealed that using Python Dask leads to a simpler and easier to follow code base than the C++ system with better server modularity and potential for heterogeneity.
- The data flow model allows for scaling out to large distributed clusters of machines with **minimal input** from the programmer.
- Performance testing on the prototype components revealed that the data flow model would **perform significantly better** in the best case, and about the same in the worst case.

Data Flow Who?

- Data flow architecture differs from the traditional von Neumann architecture in that program flow is governed by the availability of the instruction input data.
- Modern HPC systems are expected to process data quicker to cope with increasingly large data sets and shifting to a data flow model can be a **sustainable** way forward for these systems.

Figure 2: Data flow model of y = (a + b) - (b x c)

Objectives

Using the **Python Dask data flow environment**, a data flow model is explored for the CARTA back-end system to investigate the implications of such a change.

Zainab subjected the CARTA back-end to an **architectural re-design** following systems engineering best practices.

Implementation

Dylan implemented a set of **prototype** back-end components to gauge their

performance and scalability.

To Data Flow or Not?

Figure 4: Data flow diagram showing how the Dask Scheduler handles distributing computation to the Worker Node cluster

Acknowledgements

We acknowledge funding from the National Research Foundation (NRF), the use of Ilifu cloud computing resources, and guidance from the Inter-University Institute for Data-Intensive Astronomy (IDIA) academics and engineers.

We find that the shift to the Dask data flow environment for the CARTA back end may be a **worthwhile** venture.

V Better Scalability Better Performance \checkmark Server Modularity \checkmark Code Simplicity

University of Cape Town Computer Science Dept. Email: dept@cs.uct.ac.za Tel: 021 650 2663

Team Members Zainab Adjiet Dylan Fouche

Supervisor Rob Simmonds

Co-Supervisors Adrianna Pinska Kerchil Kirkham

