Prototyping a Dataflow Implementation of the CARTA System

Dylan Fouché
University of Cape Town
Department of Computer Science
fchdyl001@myuct.ac.za

Figure 1: Dask task graph for the application of the gradient function to an image in distributed memory

ABSTRACT

The CARTA system is a tool designed to analyse and visualise large-
scale astronomical imagery. The server component of the CARTA
system is currently a multi-threaded C++ implementation but is
undergoing a redesign to cope with exponentially increasing image
sizes, and other architectures are being considered.

The dataflow architecture is a model of computation that de-
scribes functions as nodes on a directed acyclic graph that execute
concurrently, while data travels asynchronously between these
nodes. This model allows for scaling out to large heterogeneous
distributed systems without having to consider the ordering of
instructions since the lack of control flow implies there can never
be race conditions or deadlocks.

In this paper, we investigate a dataflow implementation of the
CARTA back-end using the Python library Dask. We implement
prototype components of this dataflow back-end that would replace
components of the existing CARTA back-end. We subject these
prototype components to thorough testing to ensure correctness
and to measure the performance and scalability of our solution.

We show that our dataflow implementation produces correct
output, and analyse the data from our performance tests on a cer-
tain set of back-end functions. In the best case, Dask significantly
outperforms CARTA with an approximate speedup of 10X. In the
worst case, the two perform indistinguishably. We also note that the

dataflow architecture offers more potential for future scaling-out
than the current implementation.

Resultantly, we find that the dataflow model is a valid approach
for re-implementing the CARTA back-end to ensure good perfor-
mance and sufficient scalability as the computational demands on
the system continue to increase.

CCS CONCEPTS

« Software and its engineering — Software prototyping; Mas-
sively parallel systems; Distributed systems organizing principles;

Computer systems organization — Distributed architectures;
Data flow architectures.

KEYWORDS

dataflow architecture, distributed computing, radio astronomy, data
visualisation, Python

1 INTRODUCTION

The Cube Analysis and Rendering Tool for Astronomy (CARTA) [10]
is a tool designed to visualise and analyse data from the Atacama
Large Millimetre Array (ALMA) [3], the National Radio Astron-
omy Observatory (NRAO) [25], and the Square Kilometre Array
(SKA) [14] pathfinders.

Prototyping a Dataflow Implementation of the CARTA System

CARTA uses a client-server model, with the back-end having
access to large data cubes and performing computations over them
while the front-end runs in a browser on the client machine for
visualisation. This software is maintained by the Inter-University
Institute for Data-Intensive Astronomy (IDIA) [17], among others.
IDIA is a partnership of the University of Cape Town, the University
of Pretoria and the University of the Western Cape.

As the quantity of data produced by modern telescope arrays
increases rapidly, a robust and scalable solution is required to vi-
sualise and perform analysis on this imagery in near real-time.
CARTA aims to meet this need with a multi-threaded imperative
back-end implemented mostly in C++ [5]. While this approach is
widely regarded as a highly performant solution, this software is
currently undergoing an architectural redesign to better accom-
modate significantly larger images through a more distributed and
scalable solution. Once such architecture being considered here is
the dataflow model [13].

This model is becoming increasingly popular in interactive sys-
tems as we approach the exascale era of computing, with some
suggesting that this is due to its simplicity, efficiency, and manage-
ability [34]. Exascale systems are required to perform more than
108 floating-point operations per seconds (FLOPS) to be able to
process massive volumes of data.

There are many existing tools for dataflow computing at this
scale, which are commonly applied for efficient batch processing of
data on distributed systems. The Dataflow [19] service on Google
Cloud that provides serverless stream and batch data processing is
a good example of this. However, the CARTA system incorporates
real-time interaction and computational steering into its use cases,
and it is not clear whether existing dataflow tools will be able to
accommodate this.

To aid in this evaluation, we develop prototype back-end com-
ponents with the Python-based Dask [12] dataflow environment.
These components will mimic the behaviour of the CARTA back-
end for a certain set of functions and will undergo thorough testing
to ensure that they behave correctly and determine their perfor-
mance under various conditions.

The research hypothesis is that it is possible to adapt existing
dataflow tools to handle this class of high-throughput interactive
visualisation and analysis workloads in a performant and scalable
manner.

2 RELATED WORK

The move towards exascale computation has opened up new pos-
sibilities in the scientific community, making many previously in-
tractable problems now effectively computable. Yet, new software
architectures and design paradigms are needed to leverage the
processing power of these modern computers.

Shalf et al. [29] recognise that since it is mainly an increase
in the number of processing cores that is driving the increase in
processing power today, high-performance software must become
increasingly parallel to benefit from this. Cappello et al. [6] reason
that having more threads of execution in a program leads to more
potential points of failure, thus modern architecture must be more
resilient to traditional software errors.

Jack Dennis [16] presented the first concept of the dataflow ar-
chitecture in 1974, which differs from the traditional von Neumann
architecture in that there is no traditional program counter and de-
terministic execution ordering. Instead, we model our computation
as a directed acyclic graph called a task graph. The nodes on this
graph represent some function and will fire whenever input data
becomes available. Data, or tokens, will travel along the edges of
this graph from node to node.

Culler [13] described this model of computation as a "machine
language for parallel machines", but it has since been adapted as a
software design pattern not dissimilar to the pipe and filter model.
The dataflow model offers efficient use of implicit fine-grain paral-
lelism [22], and one can easily compose more complex programs by
connecting the output of one graph to the input of another [15, 30],
which presents a new way of dividing a program into distinct com-
ponents which implement high cohesion and low coupling.

The asynchronous nature of this model lends itself to efficient
implementations on highly distributed and heterogeneous systems,
which are becoming an increasingly integral part of our modern
high-performance computing infrastructure. Furthermore, the ar-
chitecture does not allow for any global state, which eliminates
side-effects [2] and thus there is no need to consider locking and
other deadlock prevention strategies for this instance of implicit
concurrency.

Verdosica et al. [35] suggest in their position paper that the
dataflow model is indeed a valid approach for exascale computation,
and many successful implementations of this nature have been
identified. Silva et al. [31], for instance, demonstrated the efficiency
of this approach for performing analysis on large raw-data files over
distributed systems, which is a primary use case for the CARTA
system.

Mao et al. [23], developed a graph-based dataflow model to sched-
ule jobs over a highly distributed computing network to process
the exascale throughput from the SKA. The authors built upon
previous work such as the open-source Celery [32] scheduler devel-
oped for the MeerKAT telescope. Furthermore, several optimisation
methods are proposed for this system including a meta-heuristic
approach such as genetic algorithm optimisation, as well as other
critical-path aware hierarchical scheduling algorithms.

Zhang et al. [38] demonstrated the vast scalability of dataflow
systems by making use of the Amazon Web Services (AWS) EC2
cloud computing infrastructure. The authors use a graph-based
scheduling technique, similar to that of Mao et al. [23]. Given this,
the authors report a 3.7X speedup over a naive multi-threaded
implementation in a C-type language.

3 DESIGN AND IMPLEMENTATION

3.1 Solution Architecture

We implemented a set of back-end components using Python and
the Dask library [12] for dataflow computing. A decision was made
to replicate the client-server model that the CARTA back-end cur-
rently employs such that the two systems can communicate with
each other. This communication takes place via a shared repository
of protocol buffer messages [7] that are sent and received sent over
the TCP protocol.

The CARTA Interface Control Document (ICD) [9] defines the
protocol by which these messages are exchanged. This protocol in-
cludes control messages, request messages and their corresponding
acknowledgement messages, as well as data stream messages. For
instance, the initial handshake protocol on connection is defined
as follows: the client will send a REGISTER_VIEWER message and
the server should respond with a REGISTER_VIEWER_ACK. This is
shown in Figure 2.

Client-side

\ Loads app/page |

Server-side

Connects to backend (WS)

)

Comnnection response (WS

REGISTER_VIEWER_ACK

Connection info

\ REGISTER_VIEWER
' updated

Figure 2: Initial connection message exchange

Our Python back-end will mimic the behaviour of the CARTA
back-end on receipt of certain messages. The server will maintain
an instance of the Image class that we define. This Image object
reads in image data from disk, persists it in distributed memory,
and provides the server with an interface for performing various
computations over the image data. We also define a Python front-
end which can connect to and exchange messages with both our
Python back-end and the CARTA server. We implement a basic
command-line interface for testing purposes, but an accompanying
Jupyter [21] notebook is used for visualisation. This modified client-
server architecture is shown as a component diagram in Figure 3.

3.2 Implementation Details

3.2.1 The Image class. The Image object maintained by our back-
end uses Dask to store and perform computations on our image data.
This class uses AstroPy [26] and h5Py [11] to abstract away from
domain-specific implementation details, and to ingest fits and hdf5
images efficiently. We store our image data in a member variable
and provide functions to invoke various computations over our
data such as Image.get_std_dev() or Image.get_argmax(). Note that
these results will be cached, so a subsequent call to one of these
functions will be much faster given the same parameters.

3.2.2 Dask collections and functions. The data in our Image class is
stored in a Dask array. The dask.array class will chunk our image
data into several NumPy [33] arrays. We let Dask determine the
optimal chunk size, which is usually no less than 100MB per chunk.
These Dask objects are lazy: they are stored as references to objects
rather than actual values. This uses Python’s Future [28] object to

D Fouché (2020)

Front-end Back-end
«Component» : @ H «C
Jupyter Notebook ! /) CARTA Server
| protobuf
uie ! !
« 1t : @ i «C »
Python Client | /) Python Server
protobuf !
F a |
use i “ie
«Component» «Component»
cu Dask Image

Figure 3: Component diagram showing the modified client-
server architecture

represent an eventual result. To retrieve any actual result, we must
first call .compute() on our Dask object.

Dask provides wrappers for many useful Python functions, in-
cluding a large subset of the core functionality of NumPy [33] and
SciPy [36]. This makes working with Dask very intuitive for a de-
veloper that is familiar with Python. We can treat our Dask array
like a normal NumPy array and apply NumPy and SciPy functions
to it as per usual.

3.2.3 The Dask schedulers. When we call .compute() on a Dask
object, we are submitting a function application to our scheduler.
We have two choices of schedulers, the default scheduler used for
parallelism on one machine, or the dask.distributed asynchronous
scheduler for clusters of one or more machines. The scheduler is
responsible for distributing the work amongst the workers and
collecting the results.

We performed tests using both the local and the distributed
schedulers. We used the Dask SSHCluster object to instantiate an
un-managed cluster for our distributed scheduler, but it should be
noted that Dask provides several options to interface with managed
clusters, including MPI [18] and SLURM [37] among others.

3.24 The Python server and client. The Python back-end uses Web-
Sockets [4] to communicate with its clients. This is implemented
with asyncio [27], a package for high-performance implicit multi-
threading using the async/await syntax. At a high level, this allows
us to define asynchronous event handlers that operate concurrently
without having to implement any threading ourselves. This means
that our backend can serve traffic from an unbounded number of
clients concurrently. The Python client also uses these WebSockets
to connect to either our Python server or the CARTA back-end.

These dependencies are summarised by Adjiet [1] in a related
work as a package diagram given in Figure 4.

Prototyping a Dataflow Implementation of the CARTA System

oAk A

CARTA Backend l

ponce | — — 2 A

Server Image Handler

i Distributor
Websockets <

[if

Image Filters
Traceback

Math ‘

Figure 4: Package diagram for Python back-end

4 TESTING AND EVALUATION

4.1 Testing Environment

Development and testing were performed using Linux Ubuntu
(18.04.5 LTS) virtual machines on the Ilifu [20] cloud computing
system for data-intensive research. Each virtual machine used by
Dask had 4 cores and 32GB of memory. The CARTA server was
also run on this same virtual machine for consistency. The testing
framework was designed and implemented with the guidance of
developers from IDIA.

4.2 Test Functions

Two back-end functions were chosen for testing: computing region
histograms, and computing region statistics (comprising the mean,
standard deviation, minimum, maximum, and sum). These represent
two of the most common use cases of the CARTA system.

In both of these computations, we use the default image channel
and region corresponding to the entire image. For the region his-
togram computation, the range of the histogram was set to be the
range of the entire image, and the number of bins set to CARTA’s
default given by:

bins = +/height « width, bins > 2.

We can visualise the computation of these two functions by
constructing the task graph that Dask would use to schedule them.
The task graph for computing the histogram of an image comprising
eight chunks is given in Figure 5. The task graph for computing
the range of the same image is given in Figure 6, and it should be
noted that the other statistics computed by our implementation
have similar task graphs.

4.3 Testing for Efficacy

To prove that our implementation is correct, we compare the output
from the Python back-end with that of the CARTA back-end. We
construct unit tests for each function that assert the two results
are within a 0.1% margin of each other, to account for errors in
floating-point arithmetic.

Aotom A
[cmsymen |
utls s .
CARTA Frontend
-] Message Provider | ooooooiin,
z oA
hdfs.

LA

Figure 6: Dask task graph for computing image range

Testing data comprised a set of astronomical images from the
public domain, made available through the European Southern
Observatory (ESO) Science Archive Facility [24].

All unit tests pass without error.

4.4 Testing for Efficiency

To determine how relatively efficient our implementation is, we
measure the time it takes for both our implementation and the
CARTA server to perform certain computations. Each test case
was executed 10 times and had a mean and standard deviation
computed.

Testing data comprised randomly generated Gaussian images.
We used a set of 20 of these images ranging in dimensions from
1000 X 1000 pixels to 20000 X 20000 pixels and in file size from 5MB
to 1.6GB. These synthetic fits images were generated programmati-
cally 1.

Each test case does the following:

! The Python script used to generate these test images was provided by IDIA and is
available at https://github.com/idia-astro/image- generator

https://github.com/idia-astro/image-generator

(1) Clear the system cache

(2) Open the file

(3) Get the histogram or region statistics

Sequence diagrams describing these test cases are given in Fig-
ure 7 and Figure 8 for region statistics and histogram functions
respectively.

Server

Figure 7: Sequence diagram for region statistics perfor-
mance test

Server

Figure 8: Sequence diagram for region histogram perfor-
mance test

We benchmarked performance with these test cases against the
CARTA back end, our Dask implementation running locally on one
machine (with 4 threads and 32GB of memory), as well as Dask
using a distributed cluster of three machines (with 12 threads and
96GB of memory, noting that the Dask scheduler shares resources
with one of the three worker nodes).

Since the performance of these functions is often IO-bound, we
performed each of these tests both with data from disk and data
in memory. For the tests with data from disk, the time it takes to
read the image into memory and distribute it across our cluster
is included in our measurements. For the in-memory tests, it is
assumed that the data is already in memory and has already been
persisted to the cluster.

D Fouché (2020)

5 RESULTS AND DISCUSSION

The mean results from our performance tests are plotted in Figure 9.
The raw data collected during testing is given in the appendix. While
we include results from both the dask distributed implementation
and the dask local implementation, the following discussion will
refer to the results from the dask distributed implementation only.

All results were subjected to an unpaired t-test that yields a
two-tailed p-value verifying their statistical significance. We use
the conventional threshold value & = 0.05.

5.1 Region Histogram Computation

For data from disk (Figure 9a), the Dask implementation (x = 3.740,
o = 2.785) was significantly faster than CARTA (x = 17.86, 0 =
15.68), offering a mean speedup of 4.78X, t(20) = 3.9641, p = 0.0003
(p <). A large proportion of this computation time was due
to disk I/O and at the time of writing it is not clear why CARTA
performs significantly worse than Dask in this regard.

With data in memory (Figure 9b), the Dask implementation
(x = 1.809, 0 = 1.312) was slightly slower than CARTA (x = 1.267,
o = 1.084), t(20) = 1.4242, p = 0.1626. But since p > a, this
difference is not statistically significant, even though CARTA was
1.43X faster on average.

5.2 Region Statistics Computation

For data from disk (Figure 9c), the Dask implementation (x = 1.847,
o = 1.589) was significantly faster than CARTA (x = 18.57, 0 =
17.63), corresponding to a mean speedup of 10.05X, #(20) = 4.2249,
p = 0.0001 (p <). This again has to do with disk I/O latency.
But with data in memory (Figure 9d), the Dask implementation
(x = 0.3226, 0 = 0.1751) was also significantly faster than CARTA
(x = 2.313, 0 = 2.032), with a mean speedup of 7.17X, £(20) = 4.3632,
p =0.0001 (p <).

5.3 Analysis of Results

In analysing Dask’s performance for histogramming, we must first
examine the requirements for computing the histogram. We must
know the image range before computing the histogram to arrange
our bins, and this is an expensive and non-trivial computation over
distributed memory. Computing the range before computing the
histogram contributes significantly to our overall computation time.
We could avoid this by caching some statistical properties of the
image such as minimum and maximum values as a header in the
image file, such as is done in a new HDF5 schema designed by
Comrie et al. [8] specifically for use with CARTA.

The reason that Dask outperforms CARTA significantly for com-
puting a set of statistical values may be related to how Dask con-
structs its task graphs. We can combine several distinct functions
into one task graph, meaning that computing all five statistical
values requires only one traversal of our image data. Furthermore,
Dask shares intermediary results between workers, as illustrated
previously in Figure 1. For example, there is no need to compute
the sum twice when evaluating the mean and sum squared error
of the image at the same time. These intermediaries are shared
between worker nodes using peer-to-peer data exchange to reduce
bottlenecks imposed by the scheduler node’s network throughput
and possibly reduce the load on file servers.

Prototyping a Dataflow Implementation of the CARTA System

(a) region histogram computation (from disk)

01 mmm carTA

W Dask (local)
40 1 mmm Dask (distributed)

30

Time (s)

20 A

10 4

123456 7 8 910111213141516171819 20
Image size (1000n X 1000n pixels)

(c) region statistics computation (from disk)

5o | MEE CARTA
58 Dask (local)

40 4 B Dask (distributed)
2
o 30 A
£
=

20 A

10

0 m

123456 7 8 91011121314151617181920
Image size (1000n X 1000n pixels)

(b) region histogram computation (from memory)

IEm CARTA
8 4 W= Dask (local)
B Dask (distributed)

Time (s)

123 4567 8 910111213141516171819 20
Image size (1000n X 1000n pixels)

(d) region statistics computation (from memory)

6 EEE CARTA
58 Dask (local)
5- W Dask (distributed)

Time (s)
w

123456 7 8 91011121314151617181920
Image size (1000n X 1000n pixels)

Figure 9: Mean computation times for the histogram and statistics functions, with data from disk and in memory.

We notice that Dask is considerably slower in some cases with
smaller images. This is due to Dask’s 100MB optimal chunk size:
for images smaller than this, the entire image may be in one chunk
implying that all computation will happen sequentially. We also
notice that in some cases, it is faster to use Dask on a single machine
than on a cluster of three machines. This is likely due to the latency
encountered in passing data between the scheduler node and the
worker nodes over the network. For less expensive computations,
the network overhead can be larger than the speed-up achieved
on the cluster, so it can be more efficient to perform the computa-
tion locally. This network latency could potentially be reduced by
experimenting with message-passing protocols that may be more
efficient than the standard SSH protocol, with MPI as an example.

6 CONCLUSIONS

We implemented a set of prototype components for a dataflow
implementation of the CARTA back-end using Dask in Python.
We developed a back-end server that responds to protocol buffer
messages in the same manner as the CARTA implementation. We
implemented a front-end that can interface with both our back-end
and the CARTA back-end. We conducted tests on these components
to ensure correctness and measure performance.

Our test results show that the Dask implementation significantly
outperforms the CARTA implementation in computing region sta-
tistics both with data from disk and data in memory. The Dask
implementation outperforms the CARTA implementation in com-
puting region histograms with data from disk, while it performs
comparably with the CARTA implementation in performing this
computation with data in memory.

Notably, the Dask solution provides a much more scalable ap-
proach to performing these computations. The distributed scheduler
can aggregate an arbitrary number of worker nodes, and given that
the network overhead is not too large, we can continue to decrease
our compute times by adding more nodes to our cluster. This is not
the case with CARTA and the local Dask implementation, where we
are strictly bounded by how many cores our one processor has. Fur-
thermore, we can introduce heterogeneity into our Dask solution,
for example by having some nodes with CPU compute resources
and other nodes with GPU compute resources in our cluster.

Thus, we conclude that it is indeed possible to adapt existing
dataflow tools to handle the high-throughput interactive visualisa-
tion and analysis workloads of the CARTA system in a performant
and highly scalable manner.

As a result of this, we find it would be feasible to move forward
with a dataflow implementation of the CARTA back-end. Specifi-
cally, we find that a hybrid approach with Dask performing smaller
computations locally and larger computations across a cluster may
offer the best performance in these use cases.

The prototype software developed in this project would form the
basis around which a new production back-end could be built. Fu-
ture work would involve extending the Python server to respond to
the additional set of protocol buffer messages for which event han-
dlers have not yet been implemented. The Python front-end would
be replaced with the existing CARTA front-end (perhaps maintain-
ing the existing performance and correctness testing framework).
Additionally, ongoing work is required to optimise the performance
of the Dask cluster, as such is the nature of distributed computation.

The software developed in this work is all open source and
available online 2 under the GNU general public license (GPLv3).

ACKNOWLEDGMENTS

This work is based on the research supported wholly or in part by
the National Research Foundation of South Africa (grant number
MND190716456261).

The author acknowledges the use of the Ilifu cloud computing
facility, a partnership between the University of Cape Town, the
University of the Western Cape, the University of Stellenbosch, Sol
Plaatje University, the Cape Peninsula University of Technology
and the South African Radio Astronomy Observatory. The Ilifu
facility is supported by contributions from the Inter-University
Institute for Data-Intensive Astronomy (IDIA - a partnership be-
tween the University of Cape Town, the University of Pretoria and
the University of the Western Cape), the Computational Biology
Division at UCT and the Data-Intensive Research Initiative of South
Africa (DIRISA).

The author would also like to acknowledge and thank our super-
visor Professor Robert Simmonds for the academic guidance and
support, as well as the developers from IDIA, Ms Adrianna Pinska
and Dr. Angus Comrie, for their technical advice and suggestions.

REFERENCES

[1] Zainab Adjiet. 2020. Exploring a Dataflow Design of the CARTA System.

[2] Tilak Agerwala et al. 1982. Data Flow Systems: Guest Editors’ Introduction.
Computer 15, 2 (1982), 10-13.

[3] A Worldwide Collaboration ALMA. 2020. Atacama Large Millime-
ter/submillimeter Array. https://www.almaobservatory.org/en/home/

[4] Aymeric Augustin. 2019. Getting started. https://websockets.readthedocs.io/en/
stable/intro.html

[5] British Standards Institute. 2003. The C++ Standard: incorporating Technical
Corrigendum 1: BS ISO (second ed.). Wiley, New York, NY, USA. xxxiv + 782
pages.

[6] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir.
2009. Toward exascale resilience. The International Journal of High Performance
Computing Applications 23, 4 (2009), 374-388.

[7] CARTAvis. 2020. CARTA Protobuf Messages. https://github.com/CARTAvis/
carta-protobuf

[8] A Comrie, A Piniska, R Simmonds, and AR Taylor. 2020. Development and appli-
cation of an HDF5 schema for SKA-scale image cube visualization. Astronomy
and Computing (2020), 100389.

[9] Angus Comrie and Rob Simmonds. 2020. CARTA Interface Control Document.
https://carta-protobuf.readthedocs.io/en/latest/index.html

2The prototype software, documentation, and Python scripts used for data analysis
and visualisation are available at https://github.com/DylanFouche/CADaFloP

[10

==
i

=
&

[24

[25

D Fouché (2020)

Angus Comrie, Kuo-Song Wang, Pamela Ford, Anthony Moraghan, Shou-Chieh
Hsu, Adrianna Pinska, Cheng-Chin Chiang, Hengtai Jan, Rob Simmonds, Tien-
Hao Chang, and Ming-Yi Lin. 2020. CARTA: The Cube Analysis and Rendering
Tool for Astronomy. https://doi.org/10.5281/zenodo.3746095

Andrew Collette & contributors. 2020. HDF5 for Python. https://www.h5py.org
James Crist. 2016. Dask & Numba: Simple libraries for optimizing scientific
python code. In 2016 IEEE International Conference on Big Data (Big Data). IEEE,
2342-2343.

David E Culler. 1986. Dataflow architectures. Annual review of computer science
1, 1 (1986), 225-253.

David Davidson. 2012. MeerKAT and SKA phase 1. 2012 10th International
Symposium on Antennas, Propagation and EM Theory, ISAPE 2012, 1279-1282.
https://doi.org/10.1109/ISAPE.2012.6409014

Alan L Davis and Robert M Keller. 1982. Data flow program graphs. (1982).
Jack B Dennis. 1974. First version of a data flow procedure language. In Program-
ming Symposium. Springer, 362-376.

Inter-University Institute for Data Intensive Astronomy. 2020. Inter-University
Institute for Data Intensive Astronomy. https://www.idia.ac.za

Message P Forum. 1994. MPI: A Message-Passing Interface Standard. Technical
Report. USA.

Google. 2020. Dataflow. https://cloud.google.com/dataflow

ilifu. 2020. Cloud computing for data-intensive research. http://www.ilifu.ac.za/
Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows.. In ELPUB. 87-90.

Ben Lee and Ali R Hurson. 1994. Dataflow architectures and multithreading.
Computer 27, 8 (1994), 27-39.

Yishu Mao, Yongxin Zhu, Tian Huang, Han Song, and Qixuan Xue. 2016. DAG
Constrained Scheduling Prototype for an Astronomy Exa-Scale HPC Application.
In 2016 IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 631-638.

European Southern Observatory. 2020. The ESO Science Archive Facility. https:
//archive.eso.org/cms.html

National Radio Astronomy Observatory. 2020. National Radio Astronomy Obser-
vatory. https://public.nrac.edu/

A. M. Price-Whelan, B. M. Sip6cz, H. M. Glinther, P. L. Lim, S. M. Crawford, S.
Conseil, D. L. Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T. VanderPlas,
L. D. Bradley, D. Pérez-Suarez, M. de Val-Borro, (Primary Paper Contributors,
T. L. Aldcroft, K. L. Cruz, T. P. Robitaille, E. J. Tollerud, (Astropy Coordination
Committee, C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V. Bakanov, S. P.
Bamford, G. Barentsen, P. Barmby, A. Baumbach, K. L. Berry, F. Biscani, M.
Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer, E. M. Bray, H. Breytenbach,
H. Buddelmeijer, D. J. Burke, G. Calderone, J. L. Cano Rodriguez, M. Cara, J. V. M.
Cardoso, S. Cheedella, Y. Copin, L. Corrales, D. Crichton, D. D’Avella, C. Deil, E.
Depagne, J. P. Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro,
L. A. Ferreira, T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Goldstein,
R. Gommers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen, P.
Hirst, D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Z. Ivezi¢,
A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S. Kern, W. E. Kerzendorf, A.
Khvalko, J. King, D. Kirkby, A. M. Kulkarni, Astropy Contributors, et al. 2018.
The Astropy Project: Building an Open-science Project and Status of the v2.0
Core Package. Astronomical Journal 156, Article 123 (Sept. 2018), 123 pages.
https://doi.org/10.3847/1538-3881/aabc4f

Python. 2020. asyncio - Asynchronous I/O. https://docs.python.org/3/library/
asyncio.html

Python. 2020. Futures. https://docs.python.org/3/library/asyncio-future html
John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale Computing Tech-
nology Challenges. In High Performance Computing for Computational Science
— VECPAR 2010, José M. Laginha M. Palma, Michel Daydé, Osni Marques, and
Jodo Correia Lopes (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1-25.
Jurij Silc, Borut Robic, and Theo Ungerer. 1998. Asynchrony in parallel computing:
From dataflow to multithreading. Parallel and Distributed Computing Practices 1,
1(1998), 3-30.

Vitor Silva, Daniel de Oliveira, and Marta Mattoso. 2014. Exploratory analysis of
raw data files through dataflows. In 2014 International Symposium on Computer
Architecture and High Performance Computing Workshop. IEEE, 114-119.

Ask Solem et al. 2013. Celery: Distributed Task Queue. URL http://docs. celerypro-
Ject. org/en/latest/index. html (2013).

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22.

Brad Vander Zanden. 1996. An Incremental Algorithm for Satisfying Hierarchies
of Multiway Dataflow Constraints. ACM Trans. Program. Lang. Syst. 18, 1 (Jan.
1996), 30-72. https://doi.org/10.1145/225540.225543

https://www.almaobservatory.org/en/home/
https://websockets.readthedocs.io/en/stable/intro.html
https://websockets.readthedocs.io/en/stable/intro.html
https://github.com/CARTAvis/carta-protobuf
https://github.com/CARTAvis/carta-protobuf
https://carta-protobuf.readthedocs.io/en/latest/index.html
https://github.com/DylanFouche/CADaFloP
https://doi.org/10.5281/zenodo.3746095
https://www.h5py.org
https://doi.org/10.1109/ISAPE.2012.6409014
https://www.idia.ac.za
https://cloud.google.com/dataflow
http://www.ilifu.ac.za/
https://archive.eso.org/cms.html
https://archive.eso.org/cms.html
https://public.nrao.edu/
https://doi.org/10.3847/1538-3881/aabc4f
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-future.html
https://doi.org/10.1145/225540.225543

Prototyping a Dataflow Implementation of the CARTA System

[35] Lorenzo Verdoscia and Roberto Vaccaro. 2013. Position paper: Validity of the
static dataflow approach for exascale computing challenges. In 2013 Data-Flow
Execution Models for Extreme Scale Computing. IEEE, 38-41.

[36] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antdnio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261-272.
https://doi.org/10.1038/541592-019-0686-2

[37] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux

Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-

cessing, Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 44-60.

Zhao Zhang, Kyle Barbary, Frank Austin Nothaft, Evan Sparks, Oliver Zahn,

Michael J Franklin, David A Patterson, and Saul Perlmutter. 2015. Scientific

computing meets big data technology: An astronomy use case. In 2015 IEEE

International Conference on Big Data (Big Data). IEEE, 918-927.

[38

https://doi.org/10.1038/s41592-019-0686-2

Table 1: Performance test results for region histogram com-
putation with data on disk

Image dimensions
1000X1000
2000X2000
3000X3000
4000X4000
5000X5000
6000X6000
7000X7000
8000X8000
9000X9000
10000X10000
11000X11000
12000X12000
13000X13000
14000X14000
15000X15000
16000X16000
17000X17000
18000X18000
19000X19000

20000X20000

Runtime (seconds)

mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev

CARTA
0.083973482
0.028463537
0.607651015
0.110343836

0.86734242
0.20533837
2.570225082
0.460740268
2.957107015
0.397043372
4.010597545
0.490310095
7.095431598
1.240013319
7.887402703
0.752159264
8.270056809
0.812064063
12.42829339
0.979725634
17.46711974
1.538639366
16.17364813
1.167979582
21.5736837
2.268034955
29.59556534
9.849811971
27.31874898
2.587735857
35.90970596
3.239538383
32.70255804
1.649885592
37.53867875
2.577100447
49.09826756
5.399490261
43.01979401
1.546950995

Dask (local)
0.147940915
0.00329015
0.175108006
0.02147193
0.376615192
0.004927366
0.535928135
0.018099902
0.832367673
0.019392305
1.130542752
0.031909439
1.51607524
0.04187532
1.878722592
0.043613406
2.459515017
0.055989485
2.94449417
0.062832722
3.596476388
0.06717249
5.218936241
0.027736309
5.107077898
0.087151372
5.935723358
0.083223989
8.207481606
0.045072005
7.780746745
0.133728753
8.8383282
0.1706576
9.777181336
0.141552742
11.05436623
0.102890502
12.04781072
0.173946126

Dask (distributed)

0.259091207
0.010272032
0.357176841
0.02016716
0.481420768
0.027400818
0.665745026
0.037117642
0.930730314
0.02520691
1.482484095
0.055183845
1.902063001
0.085091269
2.377365647
0.080923525
2.975669905
0.116232823
3.563897172
0.164335016
4.292373152
0.196846427
3.366203461
0.14202732
4.126811227
0.148521066
4.737114021
0.267186259
5.242815395
0.267549734
5.985637632
0.211510508
6.771232129
0.302698392
7.767570164
0.383065295
8.453593761
0.50356986
9.064930938
0.628402189

D Fouché (2020)

Prototyping a Dataflow Implementation of the CARTA System

Table 2: Performance test results for region histogram com-
putation with data in memory

Image dimensions
1000X1000
2000X2000
3000X3000
4000X4000
5000X5000
6000X6000
7000X7000
8000X8000
9000X9000
10000X10000
11000X11000
12000X12000
13000X13000
14000X14000
15000X15000
16000X16000
17000X17000
18000X18000
19000X19000

20000X20000

Runtime (seconds)

mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev

CARTA
0.032419875
0.001904326
0.073248547
0.006864479
0.133431528
0.012737338
0.182269339
0.010264456
0.25203988
0.005627782
0.342695104
0.006314159
0.454550814
0.003889051
0.609884823
0.081340316
0.723701357
0.007111379
0.909897896
0.010131014
1.092638929
0.031593127
1.291618937
0.049993635
1.535468281
0.066075737
1.735440321
0.067607721
1.955368664
0.019847627
2.207667474
0.01433429
2.482743686
0.0184552
2.799750769
0.064698161
3.088372432
0.048841464
3.43028668
0.044723569

Dask (local)
0.104704935
0.002369486
0.123145655
0.013052706
0.26540361
0.003703564
0.371761606
0.009769408
0.595180977
0.005742249
0.809570203
0.030759888
1.091878952
0.026310852
1.421095017
0.035455509
1.756271151
0.033428578
2.257816234
0.026651872
2.696698318
0.057053812
4.012829536
0.012858078
3.728905378
0.072568225
4.372448187
0.062938563
6.369780679
0.055126368
5.644412089
0.082365295
6.521540911
0.120978351
7.271051937
0.085549201
8.196474144
0.115216887
9.115087942
0.129096793

Dask (distributed)

0.127036522
0.001722356
0.15168232
0.007382914
0.168605557
0.010304487
0.25558966
0.008042513
0.338630372
0.011531267
0.79696593
0.020811725
1.061936385
0.025942936
1.365454931
0.025074087
1.724159806
0.04891792
2.105707183
0.021638323
2.557195692
0.049233472
1.459340244
0.025358946
1.851271295
0.007985509
2.133318104
0.017268317
2.256568447
0.023807977
2.774302989
0.021035003
3.162728916
0.030532345
3.538650655
0.017309601
3.959471981
0.029045585
4.384508413
0.023662407

Table 3: Performance test results for region statistics com-
putation with data on disk

Image dimensions
1000X1000
2000X2000
3000X3000
4000X4000
5000X5000
6000X6000
7000X7000
8000X8000
9000X9000
10000X10000
11000X11000
12000X12000
13000X13000
14000X14000
15000X15000
16000X16000
17000X17000
18000X18000
19000X19000

20000X20000

Runtime (seconds)

mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev

CARTA
0.16134228
0.053836874
0.522890772
0.130160572
1.36874004
0.338995673
3.042096641
0.499744551
3.872838514
0.591391459
4.034074716
0.613456093
7.226235466
0.615678404
6.442994514
0.646599168
8.950019369
0.669570535
12.90927582
0.731311911
14.82100849
0.648569976
14.88973671
0.620804937
20.46376944
0.852097928
18.88624544
1.048797602
33.25728028
2.005775948
30.14348859
1.940487803
38.92950441
2.960348566
46.43081268
7.411646947
53.16148639
9.156237687
51.82220803
4.542524637

Dask (local)
0.045422638
0.006742844
0.07508293
0.004320071
0.122545418
0.00580008
0.171456093
0.007473159
0.260820402
0.010865779
0.308464873
0.007858133
0.443988365
0.027526743
0.560725101
0.034143028
0.663626459
0.034997067
0.808643103
0.053703041
0.990791499
0.061534084
1.186967599
0.025442022
1.351859
0.04948981
1.519707447
0.053116254
1.824996882
0.042188788
2.089427313
0.100482101
2.264839355
0.057861187
2.525616601
0.080536692
2.750385896
0.094577817
3.108858252
0.125182723

Dask (distributed)

0.077280223
0.004058448
0.129107816
0.009515398
0.205302701
0.010094922
0.309386703
0.047115707
0.441022826
0.028997669
0.553232597
0.050323597
0.700420164
0.054970557
0.835247515
0.045428861
1.055898435
0.07968626
1.244698408
0.029541021
1.631916062
0.153189387
1.697564436
0.153722487
2.190974714
0.205142623
2.489731997
0.322029462
2.653845446
0.411781344
3.261382149
0.347641872
3.611563147
0.383452969
4.192326819
0.620512141
4.541751385
0.420168994
5.122935691
0.719616838

D Fouché (2020)

Prototyping a Dataflow Implementation of the CARTA System

Table 4: Performance test results for region statistics com-
putation with data in memory

Image dimensions
1000X1000
2000X2000
3000X3000
4000X4000
5000X5000
6000X6000
7000X7000
8000X8000
9000X9000
10000X10000
11000X11000
12000X12000
13000X13000
14000X14000
15000X15000
16000X16000
17000X17000
18000X18000
19000X19000

20000X20000

Runtime (seconds)

mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev
mean
std dev

CARTA
0.043788905
0.003319475
0.103659071
0.008089353
0.172277242
0.006895824
0.266348011
0.004656603
0.406708261
0.009293859
0.562052773
0.019508248
0.756451507
0.006086149
1.012833191
0.055870166
1.283358262
0.076588205
1.752214023
0.113030933
2.039371797
0.074384341
2.342358662
0.120243491
2.711349631
0.106822752
3.100263616
0.053334206
3.520058804
0.150215799

4.2285058
0.356011701
4.776374464
0.074351944
5.228070524
0.097616965
5.721162193
0.249753599
6.226993544
0.187102944

Dask (local)
0.040383491
0.003274622
0.06002607
0.00381433
0.085049056
0.005747465
0.109607858
0.008807267
0.153304119
0.009582305
0.15223546
0.005316572
0.191777584
0.002333368
0.277093173
0.025336
0.328220077
0.039344915
0.380241508
0.043223674
0.491069002
0.050459914
0.577141999
0.011546824
0.623599295
0.04368001
0.681589623
0.046408886
0.850479839
0.025298952
0.896898769
0.076559054
1.036016547
0.05932181
1.122260022
0.072122125
1.258089667
0.067166665
1.354669118
0.068224591

Dask (distributed)

0.069368549
0.00386439
0.082282744
0.004792538
0.107407824
0.006383513
0.133318396
0.007114832
0.196463476
0.022353219
0.167803796
0.01047157
0.202121843
0.021059842
0.250448937
0.031035124
0.288305248
0.033346087
0.330313641
0.037800247
0.378730664
0.029234504
0.314808366
0.016341557
0.326472967
0.007794566
0.351518111
0.014382425
0.448140785
0.046321125
0.463455375
0.059671443
0.571273714
0.062965594
0.566539339
0.083764575
0.582226971
0.065375858
0.621698569
0.017389287

	Abstract
	1 Introduction
	2 Related Work
	3 Design and Implementation
	3.1 Solution Architecture
	3.2 Implementation Details

	4 Testing and Evaluation
	4.1 Testing Environment
	4.2 Test Functions
	4.3 Testing for Efficacy
	4.4 Testing for Efficiency

	5 Results and Discussion
	5.1 Region Histogram Computation
	5.2 Region Statistics Computation
	5.3 Analysis of Results

	6 Conclusions
	Acknowledgments
	References

