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ABSTRACT
An open ended question in natural evolution is how and under
which environmental conditions complexity evolves. Evolutionary
robotics has been used to study evolving complexity in simulated
robots. This paper aims to investigate the environmental conditions
under which artificial robot body-brain complexity increases. This
research will evaluate correlations between environmental com-
plexity and robot complexity through the co-evolution of simulated
robots for the task of locomotion in environments of increasing
complexity, both with and without an imposed cost on complexity.
Results produced by this study suggest that the imposition of a
complexity cost evolves less complex robots across environments
of both low and high complexity versus robots evolved without a
cost.

1 INTRODUCTION
Evolutionary Robotics (ER) is an experimental sub field of Robot-
ics that removes the manual process in the design of intelligent
robots through the application of machine learning techniques
and principles of biological evolution. These simulated robots de-
velop control systems (controllers) and body configurations (mor-
phologies), either independently or in tandem, to perform tasks
of varying complexity without human supervision [5, 28]. A long-
standing question in biological and artificial evolution is how, and
under which environmental conditions complexity evolves [33].
Bedau’s arrow of complexity hypothesis states that evolutionary
organisms tend to increase in complexity over time [19]. Such a
hypothesis is not easily proven in natural biology where evolution
takes place over millions of years, but ER as a field has contributed
to answering such research questions by simulating the evolution
of biological organisms in artificial environments [3, 20, 21]. Un-
derstanding the conditions under which complexity evolves could
aid in the development of low complexity, high performing robots.
These robots could be transferred to real-world scenarios which
may be impossible or dangerous for humans.

Most work in ER investigating the evolution of complexity uses
Evolutionary Algorithms (EA) that evolve either robot bodies or
brains in isolation. In 1994 Karl Sims published his work on success-
ful co-evolution (simultaneous evolution of robot bodies and brains)
which paved the way for modern ER techniques [25]. In his paper,
artificial robots were represented by two directed graphs, the first
representing the robot’s controller and the second representing the
morphology. The evolved robots had diverse brain-body couplings
and varying behaviour patterns, importantly this study produced
robots that would likely not have been thought of or developed by a
human designer. Sim’s evolution of diverse, sufficiently performing
robots has since inspired further applications and approaches to
co-evolution. However, there are few studies that have investigated

the evolution of complexity in co-evolved robots. Furthermore, the
sensitivity of EAs to parameters such as fitness function, robot
task objective and complexity metric has lead to conflicting results
in published work about the conditions under which complexity
evolves.

This project aims to produce new results pertaining to the cor-
relations between environmental conditions and the evolution of
complexity. The hypothesis statement for this project is given con-
ducive environmental conditions, complexity increases even with im-
posed complexity costs. In support of this hypothesis, the primary
aims of this project are:

(1) To investigate whether system complexity (both brain and
body) increases despite an imposed complexity cost (defined
in section 3.3), given conducive environmental conditions.

(2) Evaluate whether the imposition of a complexity cost enables
the evolution lower complexity, equally performing robots
versus those evolved without a cost, where the performance
of a robot is gauged by the distance moved from the starting
point in an environment (task performance evaluation is
discussed in section 3.5).

Previous work investigating the correlations between environmen-
tal complexity and evolved robot complexity has shown mixed re-
sults. A 2019 paper by Nagar et al. found that simple morphologies
were evolved in both simple and complex environments when a cost
on complexity was imposed [21]. However, the robots evolved in
simple environments were in fact less complex than those evolved
in complex environments. Auerbach and Bongard found more mor-
phologically complex robots were evolved inmore complex environ-
ments [3]. Other studies have provided evidence for the evolution
of more complex robots in more complex environments [20, 23].
The impact that an imposed complexity cost has on the evolution
of complexity is still unclear, as demonstrated by the conflicting re-
sults found by Auerbach and Bongard and Nagar et al [3, 21]. Thus,
results found by this project in support of, or against, the research
hypothesis will contribute to previous findings on the impact of a
complexity cost on the evolution of complexity.

The hypothesis will be evaluated through the co-evolution of
simulated robots in twelve different environments of increasing
complexity. These robots will be evolved for the task of locomotion
and evaluated using a performance based fitness function, this fit-
ness function assigns a numeric fitness score to a robot based on the
distance reached in an environment. Evolving robots for the task of
locomotion is a well established bench-mark task for testing brain-
body evolution in ER systems [3, 16]. Furthermore locomotion as
a task is easy to understand and defining an appropriate fitness
function for locomotion is straight-forward. The complexity of indi-
viduals will be evaluated using a novel combined complexity metric
that accounts for both controller and morphology complexity. To
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Figure 1: Example robot morphology tree where differently
shaped and coloured nodes represent different robot body
part types. The key shows the correspondingmorphological
complexity value of each body part type.

accurately evaluate the hypothesis, experiments will be run with
and without an imposed complexity cost. The complexity cost pe-
nalises robots that become increasingly complex by reducing their
lifetime thus giving them less chance to exhibit strong behaviour
patterns and decreasing the chance for more complex robots to
survive in an evolution.

Most previous work in ER investigating the evolution of com-
plexity applies complexity metrics that account for either controller
complexity or morphology complexity, but rarely both [3, 20, 21].
Complexity of the controller andmorphology are ultimately bounds
for the types of behaviours exhibited by simulated robots since the
body and brain are so tightly coupled. Accurate and meaningful
complexity metrics play a large role in the balancing of complexity
and performance of simulated robots. To this end, this project also
aims to produce an accurate complexity metric representative of
overall system complexity. The novelty of this project lies with the
combined complexity metric that accounts for both morphologies
and controllers, as well as the use of a co-evolutionary Genetic
Algorithm to evolve high performing, low complexity robots.

2 RELATEDWORK
This section will acknowledge studies and methods within ER that
have have inspired the research questions and methods used in this
paper. Section 2.1 introduces techniques of co-evolution used in
ER and outlines the inspiration for the body-brain representations
used in this study. Section 2.2 outlines previous work by Tononoi
and Sporns that provided the logic behind the neural portion of
the complexity metric employed in this experiment [29]. Section
2.3 highlights previous studies in ER that have investigated the
impact of an complexity cost on both neural and morphological
complexity.

2.1 Co-evolution using HyperNEAT
Traditionally, most evolutionary studies in ER employ a learning al-
gorithm that either evolves robot morphologies or robot controllers
in isolation. Co-evolutionary algorithms are far more complex to im-
plement as the brain and body representations need to fit together
appropriately, and the crossover operations to produce offspring be-
comemore complicated as there aremore components to consider. A

further issue in the process of co-evolution is that the performance
of controller-morphology couplings learnt by an algorithm can be
completely offset by tiny mutations in morphologies. A 2019 paper
addresses this problem through use of two evolutionary processes:
one adapting the morphologies and another adapting controllers
[16]. This employs the concept of lifetime learning, whereby mor-
phologies can evolve but there is lifetime learning for controllers.
Once a new morphology is introduced, a second evolutionary pro-
cesses begins on a different timescale - evolving the controller for
that specific morphology. In this method Lamarckian evolution was
used, meaning individual improvements are directly encoded in
genomes (candidate solutions) to be used to accelerate evolution
[16]. Here the process of morphological evolution is straightfor-
ward, where the morphology is represented by a graph and each
node on the graph is a body part. Parent crossover was simply im-
plemented as a random recombination of parent morphology trees.
The evolution of controllers used Hypercube-based NeuroEvolu-
tion of Augmenting Topologies (HyperNEAT) (discussed in section
3.2.2) to set parameters in controller substrate nodes, which con-
trol movement of the robot [27]. Robogen open source framework
inspired the design of their morphology and controller representa-
tions [1]. This paper takes inspiration from Jelisavcic et al.’s work,
specifically focused on the body-brain representations and use of
HyperNEAT for the co-evolution of robot bodies and brains [16].

2.2 Neural Complexity Metric
Tononi and Sporns presented a method of measuring neural com-
plexity by measuring information integration [29]. Here informa-
tion integration is defined as the amount of effective information
that can be transferred between subsystems of a system, where
effective information is the amount of information shared between
two sources [29, 31]. This research suggested that networks hav-
ing high information integration should be highly connected and
should have highly specialised connections, whose functional roles
are separate [29]. The neural portion of the complexity metric pro-
posed in this study takes inspiration from this paper, aiming to
maximise the neural complexity measure when there is a balance
between local specialisation and global integration. Local speciali-
sation is representative of learnt behaviour in specific regions of the
body-brain configuration, for example a robot’s knee and upper leg
working in sync to achieve locomotion. Other neural metrics may
measure the complexity of a neural network through the connec-
tion weight information, or the number of connections. However,
this approach to measuring neural complexity is not necessarily
representative of meaningful behaviour. For this reason, the mea-
sures by Tononi and Sporns are more appropriate in the context of
this project, where performance and behaviour of robots is critical.

2.3 Complexity Costs
The majority of previous work in ER investigating the evolution
of complexity has focused on measuring either neural or morpho-
logical complexity in isoloation of one another. Work by Nagar et
al. found that simpler robot morphologies were evolved when a
cost on complexity was imposed on evolution [21]. This cost was
imposed through a multi-objective evolutionary algorithm that
selected for robots with low morphological complexity and high
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Environment Friction Obstacles Tilted

Set 1
1 1.0 None No
2 0.6 None No
3 0.2 None No

Set 2
4 1.0 Regular No
5 0.6 Regular No
6 0.2 Regular No

Set 3
7 1.0 Irregular No
8 0.6 Irregular No
9 0.2 Irregular No

Set 4
10 1.0 None Yes
11 0.6 None Yes
12 0.2 None Yes

Table 1: The environment parameters per set. Each environ-
ment per set had differing friction but utilised the same ob-
stacle set or a tilted floor. Regular obstacle sets contain ob-
stacles that are regularly spaced from one another whilst ir-
regular sets contain obstacles that are irregularly spaced. A
Tilted value of Yes indicates that the environment floor was
tilted at an incline.

fitness scores. Similar results were found by Revello and McCartney
when evolving control programs [23]. The programs evolved with
a dynamically scaled complexity cost proved to be more efficient
and less complex than those evolved without a complexity cost. A
recent paper by Hallauer and Nitschke investigated the impact of
environmental complexity on robot body-brain complexity with
an imposed energy cost on evolution [12]. This energy cost was
imposed on the morphology and was equivalent to the battery cost
of running the robot whilst the neural cost was imposed based on
neural efficiency. This study takes inspiration from the work of
Hallauer and Nitschke to impose an energy cost on robot evolution,
where this cost is directly proportional to robot complexity (this
cost is discussed further in section 3.3).

3 METHODS
This section outlines the methods used in the evolutionary learn-
ing algorithm of this study, this includes evolutionary brain-body
evolution and the imposition of a complexity cost with the novel
complexity metric presented in section 3.4.

3.1 Evolutionary Robot Design
The successful co-evolution of artificial robots is reliant on appro-
priate representations of robot morphologies and controllers that
can be manipulated by the evolutionary learning algorithm. The
representations used in these experiments are based on Jelisavcic et
al.’s work on co-evolving simulated robots for locomotion [16]. This
project will use the Robogen open source framework, discussed in
section 4.2 of this paper, which provides the evolution simulation
engine1. The source code for the evolutionary algorithm used in
this paper can be found on Github2.

1http://robogen.org/
2https://github.com/BrookeSte/EVOBAB

Experiment Parameters Value

Population size 100
Number of generations 100
Number of children per generation 100
DTS tournament size 2
Maximum body parts 50
pNodeInsert 0.3
pSubtreeRemove 0.3
pSubtreeDuplicate 0.3
pSubtreeSwap 0.3
pNodeRemove 0.3

Table 2: Experiment parameters used by the evolutionary al-
gorithm, where parameters prefaced with p represent mor-
phological mutation probabilities and DTS is Deterministic
Tournament Selection (see section 3.2).

3.1.1 Morphologies. Robot morphologies were represented as sim-
ple tree structures where the root node of the tree is the core of
the robot, and each node can have up to four children representing
different body parts. Figure 1 shows a simple example morphology
tree of a robot. Each sub tree attached to the root node is constructed
from a number of different node types and represents a limb of the
robot’s body. Robogen provides access to six different node (body
part) types but for the purpose of this experiment the node types
were restricted to FixedBrick, PassiveHinge and ActiveHinge3. The
morphology trees were constrained to have a maximum of fifty
nodes, this allowed for the scaling of complexity values of the robot
morphologies. For the purpose of this experiment, each node type
was given an inherent complexity value based on the ability of the
node type to contribute to movement. The complexity values given
to each node type are shown in Figure 1.

3.1.2 Controllers. Robot controllers were represented by Artificial
Neural Networks (ANNs) whereby the neurons of this network
are distributed throughout the robot’s morphology tree. ANNs
have been successfully used for developments in Neuroscience and
research into information processing in natural systems and are
well established for use in robotic control [11, 14, 16–18]. Each
body part in the robot’s morphology may have multiple neurons
attached to it. Each artificial neuron can be a standard input-output
neuron or can be an oscillator with an associated period, phase
offset and amplitude. Each robot was initialised with an associated
Compositional Pattern Producing Network (CPPN) that is evolved
during its lifetime.

CPPNs are an indirect encoding technique used to encapsulate
the complexities of neural networks by encoding a function which
is used to approximate connection weight values in the controller
network on the robot. Similar to Jelsavcic et al [16], the CPPNs are
evolved using the HyperNEAT learning algorithm. CPPNs are an ab-
straction of natural development, aiming to capture the enormous
complexities encoded in natural DNA without including unnec-
essary inefficiencies. They are similar to neural networks in that

3http://robogen.org/docs/robot-body-parts/
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they are networks of functions, but can contain multiple different
activation functions.

The connection weights between neurons in the morphology
are encoded by the evolved CPPN. Thus, the ANN represents the
phenotype of the robot whilst the CPPN represents the robots
genotype. In natural biology, a genotype (or genome) stores genetic
information about an individual whilst a phenotype describes the
physical appearance or behaviour of an individual. To retrieve
the connection weight between any two neurons in the ANN, the
coordinates of the corresponding morphology tree node in which
the neuron is embedded (relative to the core component of the
robot) are used as query parameters for the CPPN. Figure 1 shows
an example robot morphology, as well as the network of neurons
embedded inside different nodes. The arrows represent possible
connections between neurons, the value of which is encoded by
the robot’s corresponding CPPN. Since the robot’s neural network
is rooted in the morphology tree it is not transferable between
robots, instead the CPPN can be mated and transferred between
different robots as it encapsulates the learning of the controller.
Each “joint” node, which could be an active or passive hinge, may
have an attached oscillator. The range of motion of each joint with
an embedded oscillator is specified by the amplitude of the oscillator,
a value between 0 and 1.

3.2 Co-Evolution Methods
Co-evolution is the simultaneous evolution of robot bodies and
brains. The co-evolutionary genetic algorithm designed for this
experiment used HyperNEAT indirect encoding for evolution of
controllers and implemented sub tree mutations for evolution of
morphologies. Figure 6 in section 7.2 shows a diagram of the co-
evolutionary learning algorithm. Genetic algorithms are evolution-
ary algorithms based on principles of survival of the fittest and
randomised mutation and have become a default problem solving
approach in evolutionary computation since they are extremely ro-
bust, yet also efficient [10]. The selection strategy employed by the
learning algorithm was Deterministic Tournament Selection (DTS)
as it was the only option available using the Robogen framework.
DTS selects k individuals from the population for each parent that
needs to be selected for reproduction, where k is the tournament
size [8]. The individual with the highest fitness among the tourna-
ment is selected for reproduction. Since selection is fitness based,
the fitness function exerts a selection pressure on evolution. DTS
maintains a good balance of selection pressure towards high fitness
individuals but should also give less fit individuals a chance to be
selected if k is relatively small. In this way genetic diversity is main-
tained in the population. The fitness function assigns a numeric
score to an individual based on how far they were able to move in
the environment after one simulation, the details of this function
are discussed in section 3.5.

The replacement strategy chosen for the algorithm employs the
concept of elitism, where only the individuals with the highest
fitness scores survive each generation. This strategy is appropriate
for the project given that a secondary research aim is to investigate
the correlation between robot fitness and complexity. Diversity is
maintained by the selection and mutation process. The following

sections explain the process of evolving the robot morphologies
and controllers once suitable parents have been selected.

3.2.1 Evolution of Morphologies. Initial robot morphology trees
are seeded from a pre-configured robot, they are then subject to a
randommutation to ensure that the starting population has enough
variance. An initial seed was used due to limitations on the number
of generations experiments could be run for, without a seed low
fitness and complexity values were likely. The morphology trees
were evolved via Robogen’s standard body evolution methods. In-
stead of mating two morphologies together, the robot’s morphology
has a probability of being randomly mutated once per generation
(iteration). This random mutation could remove a part of the mor-
phology tree, add a new sub tree, crossover existing sub trees or
add a new node. Adding a new node to the tree would require a
free slot on the robot’s morphology tree, the new node would then
be inserted. Sub trees can be exchanged or removed in the same
way, simply attached to or removed from a slot on the robot’s mor-
phology tree. The mutation probabilities were set relatively high
to maintain as much diversity as possible given the elitist nature
of the replacement strategy. The probabilities used are shown in
Table 2.

3.2.2 Evolution of Controllers. The connection weights between
a robot’s neurons are encoded by the associated CPPN. Since the
CPPNs approximate the controller of the robot, it is the CPPNs
of robots that are mated. This learning algorithm uses an adapted
version of HyperNEAT to evolve CPPNs [27]. Due to unexpected
complications with the Robogen framework and time limitations,
only a simple version of HyperNEAT could be implemented. Hyper-
NEAT is an extension of NeuroEvolution of Augmenting Topologies
(NEAT) that allows neuroevolution to scale topology connections
to that of a comparable scale of the natural brain [27]. NEAT op-
timises and complexifies candidate topology-weight couplings si-
multaneously and favours incremental growth of simple solutions
rather than the traditional approaches using numerous random
seeds [26]. These solutions grow in complexity as evolution con-
tinues, allowing minimisation of the dimensionality of the search
space. Typically, HyperNEAT evolves a population of CPPNs by
incremental complexification of networks through the additions of
new neurons and links. A diverse CPPN population is maintained
through speciation, which groups together similar topologies based
on neuron and connection parameters.

The version of HyperNEAT implemented for this project forgoes
the technique of speciation, it is not necessary when maintaining a
significantly smaller population of CPPNs. Each robot has one as-
sociated CPPN, thus a population of 100 CPPNs is maintained. The
process of mating CPPNs is less dramatic than that of morphologies,
usually with one or two nodes in the network being exchanged per
reproduction. Thus the probability of a dysfunctional network is
highly unlikely but in the event that such a reproduction occurred,
CPPNs would be re-mated. The mutation probabilities used for mat-
ing CPPNs were kept the same as Robogen’s default HyperNEAT
parameters, these are available on Robogen’s website [1].
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Algorithm 1 Co-evolutionary genetic algorithm
1: Initialise population of 100 robots from seed
2: for Each generation g = 0...100 do
3: Select one hundred pairs of robots to produce offspring for

next generation
4: for Each pair of parents do
5: Generate offspring by mutating one of the parent’s bod-

ies
6: Mate CPPNs of the two parents and assign to offspring
7: end for
8: Group and rank offspring and parents based on fitness
9: Select the top 100 individuals for the next generation
10: end for

3.3 Imposing a Complexity Cost
The approach taken to impose a complexity cost is inspired by
previous work by Hallauer and Nitschke who imposed an energy
cost on body-brain complexity [12]. In this paper, an energy cost
was imposed by decreasing the simulation lifetime of a robot based
on body-brain complexity. In this paper, the terms energy cost and
complexity cost will be used interchangeably. A complexity cost was
imposed on individuals in the second experiment by limiting the
number of simulation ticks a robot experienced. It is thought that in
nature, the complexity of an individual is a constraint on the rate at
which they adapt and evolve, compared to simpler organisms [22].
The fitness of a robot is directly linked to how it performs over a
simulation run, thus high complexity robots will need to perform
at least as well as low complexity robots in a smaller time frame to
achieve decent fitness scores. This complexity cost served to filter
out machines that were complex because of environmental biases
instead of those that were complex due to the resulting behavioural
advantage [3]. Per generation, each robot’s fitness was evaluated
during a simulation in an environment. Each simulation runs for
a number of simulation ticks, emulating the passing of time in an
artificial environment. Instead of starting at tick 𝑡 = 0, robots in the
experiment with an imposed complexity cost started the simulation
with a tick value of

𝑡 = (𝑠 − (1 − 𝑐) ∗ 𝑠)

where s is the total simulation run time and c is the complexity of
the robot. The imposed cost is directly proportional to the robot’s
complexity. This directly affects the amount of simulation time each
robot receives, thus the lower a robot’s complexity, the longer they
have in the simulation. This gives lower complexity robots a fair
chance to achieve high fitness scores and requires that high com-
plexity robots exhibit strong task performance immediately if they
are to obtain high fitness scores. Various other works investigating
the evolution of complexity have imposed costs on complexity in
different ways, most using multiobjective evolutionary algorithms
[20, 21]

3.4 Complexity Metric
As mentioned earlier in this paper, ER has and will continue to
contribute to understanding the environmental conditions under

Algorithm 2 Fitness Function
1: Begin simulation of robot in environment
2: 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑂 𝑓𝐶𝑜𝑟𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

3: for Each each evaluation do
4: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 = 𝑀𝑎𝑥𝑉𝑎𝑙

5: for Each body part do
6: 𝑥𝐷𝑖𝑠𝑡 = 𝑝𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠

7: 𝑦𝐷𝑖𝑠𝑡 = 𝑝𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠

8: 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡 = 𝑠𝑞𝑟𝑡 (𝑝𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛2 − 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠2)
9: if 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 then
10: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡

11: end if
12: end for
13: end for
14: Return𝑚𝑖𝑛𝐷𝑖𝑠𝑡 as fitness

which complexity evolves in natural and artificial evolution. How-
ever, research into the effects that environments have on neural
or morphological complexity is lacking due to difficulties develop-
ing meaningful complexity metrics (a method for measuring the
complexity of a system) for environmental, neural and morpho-
logical complexity [3]. When devising a complexity metric, both
objective (i.e. system size) and subjective complexity (depends on
the representation) need to be considered [7]. Besides early papers
from Larry Yaeger studying evolving complexity in AL systems
through use of co-evolution methods [15, 33], there have been few
true co-evolution studies into the evolution of complexity using a
complexity metric that accounts for both body and brain complex-
ity.

The neural complexity component on the metric presented in
this paper is based off of work by Tononi et al. and Tononi and
Sporns [30, 32]. These papers provide information theoretic meth-
ods for measuring neural complexity. Specifically, they present a
metric that is maximised when there is a balance between local
specialisation and functional segregation of regions of the neural
topology and global integration between regions of the neural topol-
ogy. The premise of the metric is to predict meaningful neurological
behaviour instead of measuring the objective size of the network.
The neural metric used in this project adopts the logic used in the
work of Tononi et al. but adapts the methods of calculation to suit
the representation of robot controllers used [32]. Such a complexity
metric should aid in the evolution of modular (locally specialised,
sparsely globally integrated) ANNs, which are believed to allow
higher levels of evolvability (ability to adapt to novel environments)
in organisms [4].

This paper presents a complexity metric that accounts for both
morphological and neural complexity. The morphological and neu-
ral complexity values are calculated separately and combined to
give the overall system complexity of the robot. The morphological
component of the metric assumes an inherent complexity value
is assigned to each body part type. As seen in figure 1, the three
different node types are assigned different complexity values - Ac-
tiveHinge having the highest value since it has the greatest potential
impact on locomotion. The higher morphological complexity value
assigned to ActiveHinges also account for a portion of the neural
complexity since oscillators are embedded in hinge nodes only. To
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Figure 2: Example neural complexity calculation. Left: example robot representation where yellow nodes have embedded
neurons, arrows between nodes represent connections between these neurons. Middle: corresponding adjacency list (list of
adjacent neurons per neuron). Right: directed graph of the neural topology of the example robot. Middle-bottom: example
neural complexity calculation.

calculate the overall morphological complexity, the robot’s mor-
phology tree is traversed and the complexity value for each node
encountered is summed.

𝑐 (𝑛) = 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜 𝑓 𝑛𝑜𝑑𝑒 𝑛

𝑚𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =

𝑡∑
𝑛=1

𝑐 (𝑛)

where t is the number of body parts in the morphology tree. This
morphological complexity value is then scaled to be between zero
and one.

To calculate total neural complexity, an adjacency list storing the
adjacent neurons of each neuron is determined. This adjacency list
is used to create a directed graph representing the neural topology
of the controller. Neurons are then grouped into strongly connected
components (sub-graphs of a directed graph where there exists a
path between each pair of nodes in the sub-graph). Strongly con-
nected components are representative of areas of local or functional
specialisation in the network. Figure 2 (left) shows an example ro-
bot body-brain configuration, (middle) adjacency list and (right)
the associated directed graph. Nodes in the morphology tree with
embedded neurons are shown in yellow where arrows between
nodes represent connections between the embedded neurons. In
figure 2 (right), example strong components can be seen in the
directed graph of the neural topology. In this example there are
four strong components, the members of which are indicated by
the differently coloured arrows between nodes. Cycles within these
strongly connected components are identified and recorded as they
are representative of areas of local specialisation. In the example
figure there are two different cycles within two different strong
components (blue and red). The total specialisation, s, of the brain
was then calculated according to the following equation

𝑠 = (𝑐/𝑠) ∗ (𝑛/𝑡)
where c is the number of cycles identified, s is the number of strong
components, n is the number of neurons contained in strong com-
ponents and t is the total number of neurons in the topology. Figure

2 (middle-bottom) shows an example calculation of local speciali-
sation based on the strong components identified in the directed
graph of the neural topology.

Global integration, g, in the brain can be represented by con-
nections between strong components, as these connections imply
communication between areas of local specialisation in the brain.
The global integration of the brain is the ratio of connections be-
tween strong components to the number of strong components, an
example calculation of this is shown in figure 2 (middle-bottom). To-
tal neural complexity, according to the logic of Tononi et al. should
then be representative of a balance between the local specialisation
and global integration calculated. It unimportant whether global in-
tegration is marginally larger than the specialisation score, but one
being significantly larger than the other should reflect in the final
neural complexity calculation. Thus, neural complexity is calcu-
lated according to Equation (1) or Equation (2) to avoid excessively
large numbers should there be a significant difference between s
and g.

𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑔/𝑠 (1)

𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑠/𝑔 (2)

The result is that a disproportionate difference between these
values will result in a low neural complexity score. Following the
neural complexity calculation, the morphological complexity and
neural complexity are combined as follows to give the total com-
plexity score.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (0.7) ∗𝑚𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + (0.3) ∗ 𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

Morphological complexity is given a greater weighting since the
ActiveHinges in the robot’s morphology may contain embedded
neural oscillators - these oscillators influence meaningful locomo-
tion patterns. Thus, morphological complexity is representative of
neural complexity to an extent. Furthermore, from the perspective
of Automated Engineering and real world applications for artificial
robot design, the morphology of robots would be a larger design
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constraint than neural complexity due to the involved manufactur-
ing cost of a complex morphology [6].

3.5 Objective Fitness Evaluation
Fitness functions are an imperative part of the evolutionary process
as they determine the selection pressure in the algorithm. Selection
pressure is largely known as the driving force of evolution as it is re-
sponsible for diversifying the genetics of the population. The fitness
function decides which individuals are selected for reproduction,
without an appropriate fitness function individuals would effec-
tively be randomly selected and reproduction would be equivalent
to genetic drift (random changes in genome) [9].

Objective fitness functions evaluate how fit a robot is based on
some tangible objective, the most commonly used objective fitness
function is the performance based fitness function. Performance
based fitness functions, or behavioural fitness functions, provide
a measure for how well the robot is performing physically, usu-
ally in direct relation to the completion of some task. Behavioural
fitness functions are useful for well-defined tasks in which a suc-
cessful outcome is immediately obvious, for example locomotion,
and have see much success in various ER experiments investigating
the evolution of complexity [3, 20, 21].

The fitness function used by the learning algorithm in this study
is a performance based fitness function, quantifying the success of
a robot based on the minimum distance reached in an environment.
At each evaluation the distance from each body part to the starting
position of the robot is calculated, the minimum of these distances
is then recorded. The minimum distance is used instead of the
maximum because the minimum distance a robot is able to travel
is it’s biggest performance constraint. At the end of the simulation,
the minimum distance travelled is returned as the fitness. Pseudo
code of the fitness calculation is given in Algorithm 2.

3.6 Testing and Validation
There is no single way to validate a Genetic Algorithm as results
produced from each run will vary due to the random nature of EAs
and evolution. Since the Robogen framework provides functionality
for most of the evolutionary process, validation had to ensure that
the modified learning algorithm performed at least as well as the
existing co-evolutionary algorithm available in Robogen. Therefore,
runs of the experiment using the same random number and robot
seeds were conducted with Robogen’s learning algorithm versus
the adapted algorithm used for this project. After comparing the
average fitness produced at each stage of evolution it could be seen
that the adapted algorithm performed just as well as Robogen’s
own. Furthermore, the evolved robots produced from either run
were visualised using Robogen’s visualisation software, this allows
you to view how a robot progresses in an environment. The robots
evolved by the adapted algorithm were able to physically perform
just as well as those evolved by Robogen’s learning algorithm.

4 EXPERIMENT DESIGN AND EXECUTION
This section outlines the design of evolutionary environments (sec-
tion 4.1 and the simulation framework (section 4.2) used to execute
experiments.

4.1 Experiment Overview
Two experiments were run using the simulation framework pro-
vided by Robogen [1]. The first experiment evolved an initial popu-
lation, seeded from a pre-defined robot, of one hundred simulated
robots in 12 different environments of increasing complexity for
the task of locomotion. Each evolution, where an evolution is one
hundred iterations of evolution run in one environment, then had
to be repeated 10 times so that results could be averaged to ac-
count for the random nature of EAs. The second experiment was
identical to the first with the addition of an imposed complexity
cost on evolution. In both experiments, the fitness of robots was
evaluated using the objective fitness function discussed in section
3.5. The results gathered from the experiments were the fitness,
the complexity and the body-brain configuration of each robot in
the population per environment per run (10 runs per environment).
Comparison of the complexities of populations evolved in environ-
ments of differing complexity, with and without a complexity cost,
will provide evidence to refute or support research objective 1. Cor-
relations between complexity and fitness of evolved populations
will be compared in experiment 1 and 2 to provide evidence for or
against research objective 2.

Part of this experiment is investigating the correlations between
the complexity of an environment and the complexity of evolved
robots. To this end, twelve environments of increasing complexity
were designed. Four sets, of three environments each, were de-
signed where set 1 is the least complex and set 4 the most complex.
Each environment per set had differing friction values but used
the same obstacle set or tilted (inclined) floor. This approach to the
design of evolutionary environments is based off of Auerbach and
Bongard’s previous work on investigating complexity [2, 3], where
low friction areas are meant to simulate patches of ice that are more
difficult to traverse than high friction areas. Table 1 shows the fric-
tion, obstacle set and tilt parameters used per set. Gradual increases
in complexity were introduced within each set by decreasing fric-
tion values whilst complexity was increased between sets through
the addition of obstacles or inclined floors. Images of environments
1 (least complex, flat, full friction), 5 (average complexity, flat, reg-
ular obstacles, medium friction) and 12 (most complex, tilted, low
friction) can be seen in figure 5 left, middle and right respectively.

4.2 Simulation Framework
Robogen open source framework was used to run all experiments.
The simulation framework provided by Robogen handles the physics
simulation of robots in each of the configured environments and cal-
culates the fitness of a robot based on this simulation. Furthermore,
Robogen handles the evolution of robots in the population based on
the aforementioned fitness scores. The Robogen framework had to
be extended to allow for the co-evolution of robot bodies and brains
using an adapted version of HyperNEAT [27], outlined in section
3.2.2. Other modifications to the Robogen framework included the
imposition of a complexity cost on evolution and the addition of a
complexity metric that accounts for both robot bodies and brains.
This is discussed in sections 3.3 and 3.4.
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Figure 3: Left: Average fitness of the populations evolved across all environments (see Table 1) in the Baseline experiment (without an
imposed complexity cost) and in the ComplexityCost experiment (with an imposed complexity cost). Right Average complexity of population
in Baseline versus ComplexityCost.

Figure 4: Row 1, left: Average fitness of the population evolved in Environment 1 in Baseline versus ComplexityCost.Row1, right: Average
complexity of individuals in Baseline versus ComplexityCost in Envrionment 1. Rows 2 and 3, left and right: As above, for Environments
3 and 12 respectively. See table 1 for environmental complexity parameters.

5 RESULTS AND DISCUSSION
To the end of refuting or supporting the research hypothesis, the
experiments run aimed to evaluate the impact of an energy cost
on the evolution of complexity in simulated robots. The 12 en-
vironments in which experiments were run were of increasing
complexity where environment 1 was the simplest and environ-
ment 12 the most complex (see table 1). To evaluate the correlation
between environmental complexity and overall robot complexity,
the average complexity of evolved populations was computed over
the ten runs per environment as well as the average complexity of
evolved populations across all runs on all environments (12*10*2 =
240 evolutionary runs). Figure 3 (left) presents the average fitness
and (right) average complexity of the evolved populations, aver-
aged across all environments in the Baseline (B) experiment (no
complexity cost) versus ComplexityCost (CC) experiment (with an
imposed complexity cost). Table 3 shows the average complexity

and average fitness values of CC and B over all runs in each en-
vironment. In this table, environments where average complexity
was lower in CC than B are shown in red text, environments where
average fitness was higher in CC than B are shown in blue text
and environments exhibiting both lower average complexity and
higher average fitness in CC than B are shown in green.

Figure 4 presents the average fitness and average complexity of
the populations evolved in environments 1 (row 1), 3 (row 2) and 12
(row 3) respectively, both with and without an imposed complexity
cost. Figures for the 9 remaining environments can be found in
7.4. Additional figures plotting the average maximum fitness and
complexity per environment in CC and B can be found in section 7.5
(the maximum average results displayed similar trends to figures
included in the main text). A complexity value of 0.0 indicates the
least possible complex robot body-brain configuration, whilst a
complexity value of 1.0 indicates the most complex configuration.
The complexity values demonstrated in the figures presented in
this section are within a small range, this is due to the seeding
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Environment Average Complexity (B) Average Complexity (CC) Average Fitness (B) Average Fitness (CC)

1 0.324 0.302 3.166 3.457
2 0.327 0.323 3.291 3.007
3 0.335 0.314 3.139 3.621
Avg Set 1 0.329 0.331 3.199 3.362
4 0.316 0.323 1.579 1.807
5 0.350 0.361 2.084 1.860
6 0.329 0.298 1.148 0.953
Avg Set 2 0.332 0.327 1.604 1.540
7 0.323 0.323 1.526 1.662
8 0.327 0.317 1.549 1.505
9 0.310 0.309 1.088 0.903
Avg Set 3 0.320 0.316 1.388 1.357
10 0.335 0.384 2.334 1.983
11 0.318 0.293 2.314 2.661
12 0.319 0.320 1.216 1.436
Avg Set 4 0.324 0.332 1.955 1.693

Table 3: The average complexity and average fitness of the Baseline (B) andComplexityCost (CC) experiments, per envrionment.
Rows with green text indicate environments where average complexity was lower in CC than B and average fitness was higher
in CC than B. Rows with red text indicate environments where average complexity in CC was lower than B. Rows with blue
text indicate environments where average fitness in CCwas higher than in B. The averages per environment set (environment
sets shown in table 1) are in bold text.

of the robot population from an initialisation robot. More varied
complexity values may have been discovered if robots were evolved
for more generations, due to time constraints this was not possible.
It is worth noting that the x and y axes of all graphs have been
normalised to be between 0.0 and 1.0 for the sake of comparison
of general trends in average fitness or complexity between the
Baseline and ComplexityCost experiments.

Figure 4 (rows 1-3, left) shows that the average fitness evolved in
environments 1, 3 and 12 with a complexity cost was higher than
that of evolutions without a complexity cost. As shown in Table 3,
the same result was found in 50% of the evolutionary environments
(rows in green and blue) - although these differences were not
found to be statistically significant. However, statistical differences
between environmental fitness values were found which suggests
that there is significance in six of the environments having higher
average fitness in CC than B. The lack of statistical significance
between fitness values within each environment may be due to
a number of factors. The seeding of robots from an initial design
meant that the behaviours exhibited by the evolved population were
similar and consequently, discovered fitness values of the popula-
tion were relatively similar. Thus, this study would have benefited
greatly from both more runs per environment and more genera-
tions (evolutions) per environment. The average fitness values of
the remaining six environments of the ComplexityCost experiment
were 11% lower than the average fitness values of the Baseline
experiment. Although an 11% difference is relatively high, the dis-
crepancies in results could be due to the severity of the complexity
cost imposed on individuals.

The complexity cost was directly proportional to the complexity
of the robot and given that the seed robot’s initial complexity was
relatively high, robots may not have had enough time to evolve

appropriate low-complexity, high fitness configurations in CC ver-
sus B. Running experiments with a greater population size and
less severe complexity cost would most likely yield more concrete
evidence for the correlation between an imposed complexity cost
and fitness. A further explanation for the contrasting results is the
random nature of evolutionary algorithms, one random mutation
might result in large fitness gains whilst another might result in sig-
nificant decreases. To account for the randomness of the algorithm
it would have been favourable to have more runs per experiment,
but due to time constraints this was not possible.

Statistical significance between data sets was calculated using
the Shapiro-Wilk test for data normality and the Mann-Whitney
U test [13, 24]. Tests for statistical significance were computed be-
tween both average complexity and average fitness in CC and B
per environment. Furthermore, both average complexity and av-
erage fitness (in B and CC) between environments was tested for
statistical significance. The lack of statistical difference in average
fitness of B and CC within environments has been explain previ-
ously. It was found that there was no statistical difference between
average complexity of B and CC within environments. This is most
likely due to the lack of sensitivity of the neural portion of the
complexity metric to small neural differences and a lack of neural
diversity in evolved populations, resulting in similar complexity
values throughout the experiments.

As demonstrated by figure 4 (rows 1-3, right), the average com-
plexity of populations evolved in environments 1, 3 and 12 was
lower than that of populations evolved without a complexity cost.
Table 3 shows that eight of the environments (rows in green and
red) demonstrated average complexity lower in CC than or equal
to that of B. These results show that a greater selection pressure
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for low-complexity, high fitness individuals was imposed in exper-
iments run with a complexity cost. Furthermore, figure 4 (rows
1 and 3, right) suggests that environmental complexity did not
have a direct impact on robot complexity. Environment 12 was
defined to be the most complex environment however, as seen in
Table 3, average population complexity in environments 4 and 5
was greater than that of environment 12, with a complexity cost.
Similar results can be seen by comparing the average complexity
of environment 2 to that of environment 12, with a complexity
cost, where environment 2 displayed a higher average complexity.
These differences in average complexity between environments
were found to be statistically significant. Figure 3 summarises these
results, demonstrating that both higher average fitness and lower
average complexity values, when averaged across all environments,
were evolved with an imposed complexity cost.

Table 3 shows that average complexity per environment set (rows
in bold text) was lower in CC than in B for sets 2 and 4. These
results suggest that lower complexity individuals were evolved in
most environments with an imposed complexity cost versus the
same environments without a complexity cost. However, there is no
immediate correlation found, in this data, between environmental
complexity and robot body-brain complexity. Upon comparing the
average complexity values in B and CC in Table 3 per environment
set, there is no immediate link to increasing environmental com-
plexity and increasing robot complexity. The average complexity in
CC for environment set 1 was greater than that of environment sets
2 and 3, which were designed to be more complex. Furthermore, the
average complexity of environment set 2 in CC was greater than
that of environment set 3 despite the latter having higher environ-
mental complexity. These differences were found to be statistically
significant.

It is worth noting the possibility that the definitions of environ-
mental complexity used in these experiments may have affected
results if an environment designed to be complex in theory did
not require a complex robot configuration in practice to achieve
decent fitness values. Figure 7 in section 7.3 presents the average
complexity trend over 100 generations of evolution in each envi-
ronment in both CC and B. Although there does not seem to be a
correlation between corresponding environments in CC and B, the
general trend shows that complexity values were lower towards
the last fifty generations of evolution in CC versus B. This implies
that the fittest individuals found in the later half of evolution in
CC also had low complexity, this is further evidence of an imposed
selection pressure for high fitness, low complexity robots. The dis-
proportionately high complexity values for environments 10 and 5
in CC are most likely results of random mutations that led to a high
complexity population early on in evolution. It can also be seen
that the inherent complexity of the environments did not affect the
evolution of complexity, an example of this can be seen in the plots
of environments 1 and 11, which were two of the lowest average
complexity environments in CC even though environment 11 was
defined to be the second most complex environment.

In summary, evidence refuting research objective 1 was found
through the comparison of average population complexity between
environments of varying complexity. Results suggest that robot
complexity decreases in both complex and simple environments
when a cost is imposed on robot brain-body complexity. Conversely,

support for research objective 2 was found by analysing correlations
between population fitness and complexity in CC versus B. Trends
were discovered suggesting that the imposition of a complexity
cost may evolve simpler robots that perform just as well as those
evolved without a cost. These findings provide evidence against the
proposed research hypothesis, finding that complexity decreases,
despite environmental conditions, when a cost on complexity is
imposed.

6 CONCLUSIONS AND FUTUREWORKS
The experiments conducted provided evidence against the primary
research hypothesis 1, given conducive environmental conditions,
complexity increases even with imposed complexity costs, by inves-
tigating the relationship between environmental complexity and
average complexity of simulated robots. It was found that there was
no correlation between environmental complexity and the complex-
ity of evolved robot body-brain configurations. However, it was
found that, on average, the imposition of a complexity cost on evo-
lution evolved robots of lower complexity despite environmental
complexity. The secondary findings of these experiments were the
correlations between fitness and complexity when a cost on com-
plexity was imposed. The results presented show that, on average,
lower complexity, equally performing robots were evolved across
environments when a complexity cost was imposed versus without
a complexity cost. These results support the findings of previous
work by Nagar et al., who found that simpler morphologies were
evolved in both simple and complex environments when a cost on
complexity was imposed [21]. Previous work by Auerbach and Bon-
gard found that more complex robot morphologies were evolved in
more complex environments, adversely this study found that there
was no clear correlation between increasing environmental and
robotic complexity (both with and without a complexity cost) [3].

A further conclusion to be drawn from results is the finding
that, on average, the imposition of a complexity cost results in a
greater selection pressure for low complexity, high performing in-
dividuals thus lending support to the secondary research objective
2. This supports previous findings of Nagar et al. who found that
a multi-objective evolutionary algorithm selecting for low neural
complexity and high fitness was effective in maximising the perfor-
mance of robots and minimising the complexity of the robot brains,
producing robots just as behaviourally successful as those evolved
with a single objective evolutionary algorithm selecting for fitness
[20]. A different study by Nagar et al. found similar results when
imposing a complexity cost on morphological complexity [21].

This research would benefit from fine tuning of the evolutionary
parameters to the end of producing more consistent results. Future
work might implement the full version of HyperNEAT, which may
encourage a more diverse and competitive CPPN population, to
the end of producing larger differences between complexity val-
ues for different environments. Additionally, this research would
benefit from a study implementing less evolutionary environments
with larger, more obvious differences in complexity. This might
illuminate the differences of evolved complexity in simple versus
complex environments more clearly than this paper.
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7 SUPPLEMENTARY MATERIALS
7.1 Example Evolutionary Environments

Figure 5: Three example evolutionary environments. Left: simple, flat environment, Middle: average complexity environment
with obstacles, Right: high complexity, tilted environment. Environment parameters are shown in Table 1.

7.2 Co-evolutionary Learning Algorithm

Figure 6: The co-evolutionary learning algorithm. HyperNEAT and body mutation are used to evolve robot body-brain config-
urations, where CPPNs evolved by HyperNEAT update weight information in the Artificial Neural Network of the controller.
Diagram inspired by work by Jelsavcic et al. [16]
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7.3 Evolution of Average Fitness and Complexity per Generation

Figure 7: Left: Average complexity of the populations evolved across 100 generations for each environment in the Baseline experiment
(without an imposed complexity cost). Right: Average complexity of the populations evolved across 100 generations for each environment
in the ComplexityCost experiment (with an imposed complexity cost)

Figure 8: Left: Average fitness of the populations evolved across 100 generations for each environment in the Baseline experiment. Right:
Average fitness of the populations evolved across 100 generations for each environment in the ComplexityCost experiment.
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7.4 Average Complexity and Fitness of Environments 2 and 4-12

Figure 9: Row 1, left: Average fitness of the population evolved in Environment 2 in Baseline versus ComplexityCost.Row1, right: Average
complexity of individuals in Baseline versus ComplexityCost in Envrionment 1. Rows 2-9, left and right: As above, for Environments 4-12
respectively. See table 1 for environmental complexity parameters.
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7.5 Average Maximum Complexity and Fitness

Figure 10: Row 1, left: Average maximum fitness of the population evolved in Environment 1 in Baseline versus ComplexityCost. Row1,
right: Average maximum complexity of individuals in Baseline versus ComplexityCost in Envrionment 1. Rows 2-9, left and right: As
above, for Environments 2-9 respectively. See table 1 for environmental complexity parameters.
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Figure 11: Row 1, left: Average maximum fitness of the population evolved in Environment 9 in Baseline versus ComplexityCost. Row1,
right: Average maximum complexity of individuals in Baseline versus ComplexityCost in Envrionment 9. Rows 2-4, left and right: As
above, for Environments 10-12 respectively. See table 1 for environmental complexity parameters.
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