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ABSTRACT
An open question for both natural and artificial evolutionary sys-
tems is how, and under what environmental and evolutionary con-
ditions complexity evolves. The arrow of complexity hypothesis
posits that the most complex products of open-ended evolutionary
systems tend toward complexity over time. This study investigates
the impact a cost on overall robot complexity has on the complex-
ity and fitness of morphology-controller couplings co-evolved for
locomotion using a novelty search approach over a range of in-
creasingly complex environments. The main finding of the study
was that an energy cost imposed on complex robots during fitness
evaluation had no statistical effect on the populations evolved in
almost all simulation environments when compared to populations
evolved without such a cost on complexity. In addition the arrow
of complexity hypothesis was shown to not hold for this evolution-
ary system. It was also found that obstacles in the environment
predictably necessitated a greater overall complexity for optimal
task performance, whilst terrain friction was shown to not have a
predictable impact on optimal task performance or the complexity
of optimal robots.

1 INTRODUCTION
Darwin himself, in his groundbreaking work proposing the theory
of descent with modification and natural selection, recognised the
difficulty in conceiving that such a process could produce "organs
of extreme perfection and complication", such as an eye [10]. There
has since been evidence in support of Darwin’s model [11, 30],
however it remains difficult to track the incremental stages leading
to the development of such complex features; in part due to the in-
completeness of the paleobiological record and the large time-scale
over which natural evolution occurs. Indeed, how and under what
evolutionary and environmental conditions complexity evolves re-
mains a largely open question for both natural [14] and artificial
evolutionary systems [12, 52].

Evolutionary Robotics (ER) provides an ideal, controlled environ-
ment for simulated evolution through the application of evolution-
ary algorithms to the evolution of the morphology, controller, or
both, for autonomous and simulated robots [22]. Two of the main
approaches to research within the field of ER are Automated Engi-
neering and Synthetic Biology [12, 16]. The Automated Engineering
approach aims to successfully evolve robotic system designs fit for
the given task [16], whilst the Synthetic Biology approach uses
ER as a platform for hypothesis testing and investigation in the
field of evolutionary biology [12]. The evolution of complexity has
important implications for both of these approaches. Additionally,
ER has notable overlap with the field of Artificial Life which often

makes use of tools from computer modelling and robotics to inves-
tigate emergent phenomena in life-like systems [16]. Hence, any
particularly useful findings of this study may be applicable to the
field of Artificial Life.

The impact of evolved complexity on engineering applications of
ER is clear: the degree of controller and morphological complexity
directly impacts the applicability of the evolved solutions to real-
world contexts. Excessively complex solutions may be infeasible
due to the expense involved in manufacturing and maintenance.
Complexity management strategies, such as imposing a cost on
complexity during evolution, if shown to not greatly sacrifice task
performance would be valuable in ensuring the evolution of max-
imally feasible and effective solutions. Additionally, establishing
the relationship between task or environment complexity and the
relative effectiveness and complexity of the robots evolved is es-
pecially beneficial to automated engineering applications aiming
to evolve solutions for remote or hazardous tasks that permit little
practical testing.

The ‘arrow of complexity’ hypothesis from evolutionary biology
asserts that the most complex products of open-ended evolutionary
systems tend towards increasing complexity over time[6]. Study-
ing the impact of environmental complexity on the complexity of
evolved morphology-controller (body-brain) couplings in an open-
ended ER system [26] would show whether this hypothesis holds
for synthetic evolutionary biology. Additionally, the findings would
contribute to the debate about whether natural selection drives the
growth of biological complexity over time or, controversially, that
the drive towards complexity in natural evolution is a passive force
[28, 52].

In this study the concept of novelty search [28] is applied in
the selection of fit individuals for reproduction in the evolutionary
algorithm. It is often useful to refer to a genotype which is a repre-
sentation of an individual or candidate solution [43]. Populations of
robots are evolved for the common ER benchmark task of locomo-
tion [44] across a range of increasingly complex task environments.
In each task environment evolution is conducted once with, and
once without, an imposed cost on overall robotic complexity. In
this study the cost associated with complexity takes the form of an
energy cost affecting the simulation time for which an individual is
evaluated.

1.1 Research Objectives
The primary aim of this study will be to investigate the hypothesis
that associating a cost with complexity during evolution facilitates
the evolution of lower complexity robots without sacrificing task per-
formance. The notion of imposing a cost on complexity is inspired
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by the certain disadvantages that accompany increased complexity
in nature. For instance, a random mutation is far more likely to
disrupt a complex organism than to aid it therefore affecting the
speed with which such organisms experience adaption [14, 38].
Hence, complex organisms do pay a cost on complexity. The impact
of a complexity cost on the complexity and fitness of individuals in the
evolved population will be comparatively evaluated with respect to the
population evolved without such a cost on complexity. Additionally, by
comparatively evaluating the populations evolved in the different task
environments, this study aims to further elucidate the environmental
conditions under which complexity evolves. Furthermore, this study
contributes to the research by investigating the impact of a cost
of complexity using novelty search, where previous studies have
made use of objective and multi-objective search [5, 37, 39].

Novelty search imitates the open-ended dynamic seen in natural
evolutionary systems by searching directly for the novel forms open-
ended evolutionary systems characteristically produce [26, 28, 48].
Therefore, by investigating the trends in complexity seen over all
generations of the different evolutions, this study aims to establish
whether the arrow of complexity hypothesis holds for open-ended
ER systems.

Previous ER studies have investigated the impact of an imposed
cost on complexity [5, 37, 39]. However, the complexity metrics
used in these works measure controller or morphological complex-
ity in isolation, whilst limiting the potential complexity of the other.
There have also been studies investigating the impact of environ-
mental complexity (task difficulty) on evolved populations [4, 5]
but again with the limitation of a metric only accounting for mor-
phological complexity. Another aim of this study is to present and
use a complexity metric which takes into account both morpholog-
ical and controller complexity in order to address this gap in the
literature. This choice is motivated by the principles of embodied
cognition which dictate that intelligent behaviour arises from the
coupled dynamics of an agent’s body, brain and environment [2].
The use of such a metric addresses a limitation of previous studies:
the strongly coupled nature of the body and mind may, where neu-
ral complexity is limited, result in the evolution of a more complex
morphology in order to compensate and vice versa [2].

2 BACKGROUND & RELATEDWORK
ER has grown hugely since the early 1990s [20] and as such numer-
ous approaches and techniques have been proposed, applied and
investigated. This section will go on to overview the research that
has informed this study as well as the techniques applied in this
study.

2.1 Behavioural Diversity Maintenance
The evolutionary algorithms used in ER rely on the Darwinian
principle [10] of selection of the fittest. Darwinian evolution also
relies on diversity within the population, however the operations of
mutation and crossover are often insufficient to maintain enough
diversity [13]. Traditional fitness function based approaches to
evolutionary search implicitly assume that pursuing increased per-
formance with respect to the objective will lead the search in the
direction of desired behaviours [12]. However, such an approach
can encounter the issue of deception [51] where the fitness-function

actively misguides the search, resulting in premature convergence
around local optima. Objective-based search may also suffer from
the bootstrap problem in ER where all individuals of a randomly
generated initially population are of equal fitness resulting in no vi-
able solution being generated by the evolutionary process [35]. The
concept of diversity maintenance is that by maintaining a greater
spread of individuals within the evolutionary search space the prob-
lem of early convergence the lack of fitness gradient present in the
bootstrap problem can be mitigated. Diversity maintenance tech-
niques such as fitness sharing [17] and the fitness uniform selection
scheme [21] emerged as alternative approaches to objective based
search.

2.1.1 Novelty Search. The novelty search algorithm, first described
by Lehman and Stanley [26], takes the concept of behavioural di-
versity maintenance to its extreme and searches explicitly for be-
havioural diversity. The novelty search algorithm uses a domain-
specific behavioural novelty metric in place of a traditional fitness
function for the selection of fit individuals in the evolutionary algo-
rithm. The novelty score of an individual is calculated with respect
to the rest of the population and, optionally, an archive of past indi-
viduals. The archive serves to characterize the spread of solutions
in behaviour space.

Novelty search does not pursue a static objective and so avoids
the problem of deception [51] and premature convergence seen
in objective search. A further benefit is that novelty search will
discover diverse solutions whereas fitness-based evolution typi-
cally converges on a single area in the search space [19]. Novelty
search has also been shown to significantly outperform objective-
based search and often evolves superior behaviour [26, 28]. One of
the most critical considerations for novelty search’s evolutionary
dynamic is the measure of behaviour similarity [25]. The chosen
novelty metric should indicate the sparseness of the individual’s
position in novelty space.

Previous work has shown that novelty search may struggle to
find optimal solutions where the behaviour space is extensive [27].
Another issue presented by novelty search is that significant re-
sources may be squandered exploring unfruitful regions of the
search space [9, 27]. Additionally, novelty search does not explicitly
fine-tune solutions as the evolutionary pressure is kept towards
finding new behaviours [34]. In an effort to address these shortcom-
ings novelty search variations such as novelty search with local
competition [29] have emerged. Such strategies attempt to optimise
both the novelty and performance of solutions.

2.2 Body-Brain Representation and
Co-evolution

How best to define a compact representation encompassing all parts
of a robot, from its morphology to its controller, remains an open
question in ER [12]. However, it has been shown that genotypes that
allow for the simultaneous evolution of morphology and controller
facilitate the evolution of more robust behaviours [7].

Directed graphs of nodes and connections have been established
as a useful way to represent a robot’s morphology and allow the ro-
bot to be synthesized through traversal from the root node down all
connections. Additionally, recombination and mutation operations
are well defined for such tree-based encodings. In Sims’ seminal
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work [42, 43] the nodes of the directed graph encoding a creature’s
morphology each describe a rigid part - the physical shape of which
is determined by the associated dimensions and the relative motion
between the part and its parent is constrained by the assigned joint-
type. The connections between nodes describe the placement of
the child part relative to the parent with separate fields describing
the position, orientation, scale and reflection of the part. Similarly,
the morphological genotype used in the paper by Jelisavcic et al.
[22] is a directed graph where each node represents one of three
components (active hinge, fixed brick, core component) available
within the RoboGen framework and where edges between nodes
describe the physical connections between components. In both
of these approaches the nervous system of the robot is distributed
throughout the body.

In Sims’ work [42, 43] directed graphs representing the brain
are nested within morphological nodes with which there is an
association. As a result, mutation and crossover operate on the
body and brain as a unit. In the paper by Jelisavcic et al. [22] the
controller is two-part and consists of a morphology-independent
connective Compositional Pattern Producing Network (CPPN) and
a network of Central Pattern Generators (CPGs). The network of
CPG nodes is implicitly represented by the morphological encoding
as each active hinge defined in the robots morphological structure
has an associated CPG node with the same relative position as the
active hinge corresponding to the robot’s core component. The
connection weight between any two CPGs is found by querying the
CPPN. The separation of the controller into two parts allowed the
researchers to employ lifetime learning of the controller without
affecting the morphology as well as enabling them to transfer the
CPPN to offspring. An additional benefit of this encoding is that
the HyperCube-based NeuroEvolution of Augmenting Topologies
(HyperNEAT)[46] method for neuroevolution can be applied to
the evolution of the connective CPPNs, which are able to repre-
sent connectivity patterns as functions in hyperspace. As a result
connective connective CPPNs evolved with HyperNEAT are able
to accomodate changes in the substrate network (for example the
CPG network in [22]) without the need for further evolution. Hy-
perNEAT is an extension of the NeuroEvolution of Augmenting
Topologies (NEAT) method for neuroevolution which was shown
to outperform the best fixed-topology neuroevolution method and
resulted in significantly faster learning [47]. Furthermore, connec-
tive CPPNs evolved with HyperNEAT are able to indirectly encode
large scale Artificial Neural Networks (ANN) which are the most
widely used controller paradigm in ER[12].

2.3 Evolving Complexity in Evolutionary
Robotics

Two previous studies by Auerbach and Bongard [4, 5] have ex-
amined the impact of environmental complexity on the evolved
morphological complexity of virtual organisms with restricted ner-
vous systems. The same morphological complexity metric - the
Shannon diversity [40] of the external curvature of the trimesh ro-
bot morphologies - is applied in both studies and in both studies the
virtual organisms are evolved in a simple, flat control environment
and 49 other environments of increasing complexity. The more com-
plex environments consist of infinite series of differently spaced

low-friction, rectangular solids of varying heights over which the
virtual organisms must move. The fitness of the organism is deter-
mined by the directed displacement it achieves in the environment
in a fixed amount of time. The results of the earlier study [4] lend
some support to the hypothesis that the complexity of a robot’s
task environment could create an evolutionary pressure leading
to the evolution of more complex morphologies, as some envi-
ronments saw the evolution of more complex morphologies than
seen in the simple control environment. However, the majority
of environments evolved organisms with morphologic complexi-
ties not significantly different to those of the organisms evolved
in the control environment. Overall, the results demonstrate that
the increased environment complexity did not necessarily result in
increased morphological complexity. These results contrast with
the results of the later study [5] in which a multi-objective selection
mechanism that selects for simplicity as well as locomotion ability
is applied. In this experiment the 49 more complex environments all
actively induce a selection pressure favouring greater morphologi-
cal complexity than simpler environments when a cost is imposed
on complexity.

Contrary to the findings of [5], the key finding of Furman, Nagar
and Nitschke’s work [37] was that the imposition of a complex-
ity cost on morphological complexity enabled the evolution of
simpler morphologies with negligible differences in task perfor-
mance. In both studies, evolution was performed over a number
of environments of different complexity. In this study a collective
robotics gathering task was performed in environments with dif-
fering numbers and sizes of blocks and different mandated degrees
of cooperation. In each environment robots were evolved using
a single-objective evolution method for comparison with those
evolved using a multi-objective evolution method. Both methods
attempt to maximize task performance which in this case is the
number of blocks successfully moved into the gathering zone in
the given time. The multi-objective method concurrently tries to
minimise morphological complexity - thus imposing a cost on com-
plexity.

Previous work has also investigated the effect of environmen-
tal complexity on neural complexity. Revello and McCartney [39]
found that the inclusion of a dynamically scaled cost term in the
fitness function used in evolution not only reduced the complexity
of the control program evolved for the robot, but also that these
solutions had improved performance compared to those evolved
without cost terms. The cylindrical, wheeled robots in this exper-
iment have bump and sonar sensors placed on the front and 90◦
to either side. The configuration of used sensors and robot con-
trol program are co-evolved during simulation. The robots were
evolved in a simple maze environment, the same maze environment
but with noisy input to sensors and in a purposely deceptive maze
environment. Fitness was determined by the amount of progress
made toward the goal less the cost terms associated with program
size (in bits) and time of execution. The cost terms aimed at limiting
controller complexity were scaled by the progress made toward
the goal so as not to restrict the early exploration of the solution
space. In all scenarios the application of the cost terms allowed
the effective management of the complexity of the evolved control
programs.
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3 METHODS
3.1 Evolutionary Body-Brain Representation
The body-brain representation used in this paper is similar to that
used in a paper by Jelisavcic et al. [22] where simulated robots were
successfully co-evolved for locomotion, thus demonstrating the
suitability of this representation for this experiment. The similarity
in representation arises from the fact that they based their chosen
representation off the one provided by the Robogen framework
which is the one we use. Additionally, the chosen body-brain repre-
sentation allows for a progression in complexity over time which
has been shown to have demonstrable benefits over encodings that
do not allow for this [5].

The morphological genotypes of the robots in this work are
represented by directed graphs where each node of the graph is rep-
resentative of a morphological module (part) provided by Robogen
and the root node represents the core component. Each node con-
tains information pertaining to the attachment of child nodes (parts)
and the part’s own orientation. The possible parts comprising a
robot’s morphology are limited to: active hinges, passive hinges
and fixed bricks in addition to the core component. This was done
to simplify the complexity calculation and analysis of the evolved
morphologies. Additionally, robot morphologies are limited to a
maximum of 50 parts. However, this restriction should not impede
morphological development as it provides quite a generous upper
bound on the number of morphological parts.

The controller representation for robots is two part. First, there is
a Central Pattern Producing Network (CPPN) associated with each
robot. Secondly each robot has an Artificial Neural Network (ANN)
’brain’. The sensors present on the robot’s morphology serve as
inputs to the ANN and the output neurons of the ANN correspond
with motors (for active hinges). Additionally, the ANN may include
a number of internal or hidden units not connected to any inputs or
outputs. The ANNs in Robogen differ from classical recurrent ANNs
in that the possibility of oscillator neurons is allowed alongside the
default sigmoid neurons [3]. The CPPN associated with the robot
is used to set the weights of the substrate ANN. An example of a
robot and its associated representation is presented in Figure 1.

3.2 Evolutionary Search
The approach to evolutionary search taken in this study is close
to the original novelty search approach described by Lehman and
Stanley [26] with some adjustments. The novelty score of an indi-
vidual is calculated with respect to the rest of the population and
an archive of maximum fifty past individuals upon it’s origin. In
this study the archive of past individuals is randomly composed
and maintained. That is, on the origin of a new individual it will
be probabalistically added to the record of past individuals in the
novelty archive. Gomes et al. [18] showed that the use of such an
archive outperforms an archive consisting of only highly novel
past individuals as used by Lehman and Stanley [26]. Their results
also demonstrated that novelty calculations with respect to the
current population alongside the archive yielded better results than
when novelty is only calculated using an archive. In this work the
novelty of individuals is calculated with respect to the 15 nearest
neighbours in the population and archive. Gomes et al. [18] showed

that this commonly chosen number of nearest neighbours for the
novelty calculation performed well across all metrics.

3.2.1 Novelty Metric. Genotypic difference doesn’t always cor-
relate with behavioural differences [13]. Hence, the approach to
measuring novelty taken in this paper attempts to directly measure
behavioural difference. To this end, the final ending position of
each robot is recorded after evaluation. After the newly created
individuals have been evaluated, and their end positions recorded,
the novelty score for each of them is calculated. The novelty score
is calculated as the average euclidean distance between the end
position achieved by the robot and the ending positions of the 15
nearest robots in the population and archive. Each of these newly
evaluated individuals is then added to the novelty archive with
a 30% probability. The use of ending positions to characterise be-
havioural novelty was successfully applied by Lehman and Stanley
in evolving robots with novelty search for a maze navigation task
[28].

This novelty metric captures how well explored the region of
the environment which the robot reaches during its simulation is.
In this case a low novelty score indicates that the robot has similar
locomotive ability to others due to the similarity in ending positions
achieved. A high novelty score indicates that the robot has achieved
a unique ending position. Conceptually we can also see that this
metric subliminally guides the search toward greater locomotion
ability: robots always start their evaluation at the center of the
environment and hence this area of the behaviour space will quickly
be populated by robots with low locomotive ability. Subsequently,
robots will have to achieve a greater distance in order to reach more
sparsely populated regions and achieve greater novelty scores.

3.3 Body-Brain Co-Evolution
In this study full-bodied evolution was conducted meaning that
the robot body and brain are simultaneously evolved. The Robogen
Framework was extended for this project to enable neural evolution
(of the CPPNs) with a simplified version of the HyperNEAT [46]
approach when conducting full-bodied evolution. The morpholo-
gies are simultaneously evolved through application of mutation
operations to the morphological representation. The possible mu-
tation operations performed on the morphological representation
include: node (part) removal and addition, along with subtree dupli-
cation, removal and swapping. The simplications to the HyperNEAT
method were made due to time constraints as well as the complexity
involved in extending Robogen.

Instead of initialising a population of minimal CPPNs with ran-
domweights, each member of the initial robot population is directly
assigned a minimal CPPN initialised with random weights. The
CPPN assigned to a robot is then permanently associated with that
robot as part of its neural representation. This direct assignment
means that assigning historical markers to keep track of new genes,
and dividing the population into species is avoided and reproduc-
tion simply occurs between the two CPPNs of the parents selected
by the evolutionary algorithm. The CPPN created is then assigned
to the robot offspring. The approach to body-brain co-evolution is
summarised by the following steps:
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Figure 1: This figure presents an example robot (left) alongside its evolutionary representation. The association between parts
of the robot’s morphological representation (middle) and particular neurons in the ANN (right) is indicated. The second part
of the neural representation of the robot, the CPPN, is not shown here.

(1) The initial population of robots is created by seeding themor-
phologies from a seed robot and assigning each a minimal
CPPN with randomised weights.

(2) For each robot representation: weights in the substrate ANN
are filled by querying the CPPN.

(3) The population is evaluated.
(4) Each individual in the population is assigned a novelty score

and is probabalistically added to the novelty archive.
(5) Until required number of offspring are created:
(a) Parents are selected from the population
(b) The morphology of the first parent is copied into the child
(c) The CPPNs of the parents are mated and the resulting

CPPN is assigned to the child
(d) The morphology of the child is then mutated through

stochastic mutation operations performed in the morpho-
logical representation

(6) Steps 2 to 4 are performed for the newly created population
of children

(7) The population of children is combined with the current
population in accordance with the replacement strategy

(8) Steps 5 to 7 are repeated for the given number of generations.

3.4 Simulation Environments
The twelve simulation environments used in this study were de-
signed in four sets of three, where each consecutive set increasing

in environmental complexity from the previous one. The division
of the environments into sets can be seen in Table 1. The first envi-
ronment set is a perfectly flat and unobstructed and is intended to
serve as the control environment set. The next set of environments
consists of mirrored, evenly spaced, low obstacles over which the
simulated robot must move. The challenge presented by this set of
environments is then made greater in the next set of environments
which contains mirrored, irregularly spaced and sized obstacles of
differing heights. The final set of environments consists of tilted
planes thus introducing the challenge of moving up a gradient. The
environment design for each set can be seen in Figure 2.

Each set consists of three identically environments except that
one has full surface friction (1.0), one has moderate surface fric-
tion (0.6) and one is a low friction environment (0.2). This means
there are three grades of difficulty within each set. This extra divi-
sion allows for an even deeper investigation into the impact of the
environmental complexity on evolved complexity and task perfor-
mance.

These environmentswere implemented using the available physics
simulator configuration options available as part of the Robogen
Framework [3]. All robots start their simulation in the center of
the environment. The environments were designed to be mirrored
so as not to restrict or advantage the robots’ locomotion in any
direction and thus allow the greatest potential for the evolution of
genuine locomotive ability.
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Figure 2: Simulation Environments from left to right: Environment Set 1 (flat), Environment Set 2 (regular obstacles), Envi-
ronment Set 3 (irregular obstacles), Environment Set 4 (tilted)

Environment Set 𝑆𝑒𝑡1 𝑆𝑒𝑡2 𝑆𝑒𝑡3 𝑆𝑒𝑡4
Environment 1 2 3 4 5 6 7 8 9 10 11 12

Terrain Friction 1.0 0.6 0.2 1.0 0.6 0.2 1.0 0.6 0.2 1.0 0.6 0.2

Table 1: Here the classification of the twelve simulation en-
vironments into sets is shown. The environment configura-
tion for each environment set can be seen in Figure 2 and
the terrain friction for each environment is indicated.

3.4.1 Fitness Evaluation. The objective fitness score for each indi-
vidual in the evolving population is never used during evolution,
but was still calculated and stored in order to track the locomotion
ability (task performance) of the population. This fitness score was
calculated as the minimum euclidean distance the robot achieved
in the environment from it’s initial start position over all simulated
evaluations. This is a commonly chosen measure of objective fitness
for locomotion [44]. Robots are simulated in the environment for
10 seconds, unless a cost is imposed on complexity as explained in
the next section.

3.5 Imposing a Cost on Complexity
The approach to imposing a cost on complexity in this study was
to impose an energy cost based on the genotypic complexity of
the robot. This approach draws its inspiration from evolutionary
biology [38]. This energy cost was realised in the form of a reduction
in the simulation time a robot’s fitness was evaluated for. The
calculation for the adjusted simulation time for a robot given the
robot’s complexity score (which is scaled to a value between 0
and 1) is calculated using the following equation where the default
simulation time is 10 seconds:

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 10.0 − ((1 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒) ∗ 10.0) (1)

Previous studies have used multi-objective functions that explic-
itly select for lower complexity alongside performance as the means
of imposing an evolutionary cost on complexity [5, 37]. The rea-
soning behind the different approach taken in this study is to allow
for the evolution of complexity where it confers a significant boost
in the efficiency of task performance. The results of the complexity
cost experiment will therefore better represent the relationship
between task difficulty, task performance and robot complexity. Ad-
ditionally, explicitly selecting for individuals of lower complexity
would disrupt the open-ended evolutionary dynamic created by
novelty search.

Obviously, in order to impose a cost on complexity there must
be some measure of an individual’s complexity. The complexity
metric used in this study is presented in the next section.

3.6 Complexity Metric
The aim of this metric is to adequately quantify the overall complex-
ity of the robot. That is, the complexity score should be representa-
tive of both morphological (body) and controller (brain) complexity.
Complexity scores are scaled to between zero and one, where a
score of one would indicate a maximally complex robot. The overall
complexity was calculated with the following weighted sum:

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = (0.7 ∗𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)+
(0.3 ∗ 𝑛𝑒𝑢𝑟𝑎𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) (2)

3.6.1 Morphological Complexity. The morphological complexity
calculation relies on the inherent complexity of the parts that make
up the robot’s morphology. The fixed brick is the simplest possible
part and was therefore assigned a complexity of 1. The passive
hinge is able to facilitate movement, making it more complex than
the fixed brick, and is therefore assigned a complexity of 2. Ad-
ditionally, passive hinges present an opportunity for morphology
facilitated control [36] whereby the morphology can contribute
joint manipulation not explicitly performed by the controller. The
active hinge is the most complex part available as it can be intention-
ally manipulated and it is always associated with an output neuron
of the ANN. Hence it was assigned the highest part complexity of
3.

The morphological complexity is simply the sum of the part
complexity for each part found in the morphological genotype.
The morphological complexity is scaled to a number between 0
and 1 using the minimum complexity score possible (2) and the
experimentally determined maximum morphological complexity
score possible (90).

For example, application of this morphological complexitymetric
to the robot presented in Figure 1 would begin with the sum of
the part complexity of all nodes in the morphological genotype
resulting in a total value of 36. Scaling this value using the minimum
and maximum complexity scores gives the final morphological
complexity score of 0.3469. We see this score is relatively low as the
number of parts comprising the robot is far less than the maximum
number of parts permitted (50 parts).

The higher weight attributed to the morphological complexity
component in the weighted sum is due to the fact that the morpho-
logical graph is representative of some aspects of neural complexity.
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For instance, the number of active hinges corresponds with the
number of output neurons found in the ANN. Additionally, the
morphology dictates the number of possible sensor inputs to the
ANN. Thus the morphological genotype is at least partly represen-
tative of the neural complexity as the network topology bounds
the complexity of achievable behaviours [12].

3.6.2 Neural Complexity. The morphological complexity score in
part represents the possible complexity of the brain, but just how
complex the ’brain’ actually is remains to be seen. The inspira-
tion behind the metric presented here stems from two previous
information-theoretic neural complexity measures presented in
work by Tononi et al. [50] and Tononi and Sporns [49]. Both of
the measures presented in these papers are maximised when two
properties seen in the brains of higher vertebrates are show to co-
exist: namely functional segregation and local specialisation should
coexist alongside global integration [50]. This measure avoids max-
imisation by randomness and in an intuitive sense captures the
manner in which the system processes information at multiple
scales. The measure was shown to be low in completely integrated
or completely segregated systems and high where a balance be-
tween local specialisations and global integration was achieved.
This logic informs the design of the neural complexity metric pre-
sented here.

Tononi and Sporns [49] identify complexes which are subsets
of the system, not part of any larger subset, that are capable of
integrating information. Functional specialisation is shown by the
connection patterns developed between the elements of a complex
while global integration is a measure of the ability to exhange in-
formation over any bipartition of the network. The requirement for
interactions between components at multiple levels in the system
can be seen as a unifying principle of complexity [24]. In this work,
the identification of ’complexes’ takes the form of the identification
of strongly connected components (groups of neurons where a path
exists between all pairs of neurons). These groupings of neurons
represent a computational unit (local specialisation) capable of pro-
ducing isolated functionality since the output neurons of the ANN
control associated active hinges of the morphology. The specialisa-
tion of the strongly connected components is further exemplified by
the number of distinct cycles which have developed. Additionally,
the division of the ANN into strongly connected components in
part captures the modularity of the network. The modularity ob-
served in many biological structures and processes has been noted
as a factor which greatly contributes to evolvability [8]. By defini-
tion, information can be exchanged between any bipartition of a
strongly connected component, hence the ability of the network to
exchange information over any bipartition can be determined by
the existence of inter strongly connected component connections.
The connectivity of a graphs has also previously been used as a
measure of complexity [45].

The brain complexity calculation can be described by the follow-
ing set of steps:

(1) An adjacency list representation of the ANN is constructed
(2) Neurons are grouped into strongly connected components

of more than one neuron
(3) Connections between strongly connected components are

tallied

(4) The degree of global integration present in the brain is esti-
mated by the following equation:

𝑔𝑙𝑜𝑏𝑎𝑙𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑡𝑟𝑜𝑛𝑔𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠/
𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐼𝑛𝑡𝑒𝑟𝑆𝑡𝑟𝑜𝑛𝑔𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

(3)

(5) The number of cycles present in each strongly connected
component is determined using Johnson’s algorithm [23]

(6) The proportion of the brain specialised is calculated as the
ratio of the total number of neurons in a strongly connected
components (specialisations) to the total number of neurons
in the ANN.

(7) The average degree of specialisation is estimated by the
average number of cycles present in the strongly connected
components

(8) The brain is assigned a specialisation score calculated as
follows:

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑒𝑔𝑟𝑒𝑒𝑂 𝑓 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛∗
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑂𝑓 𝐵𝑟𝑎𝑖𝑛𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑒𝑑

(4)

(9) Finally, in order to determine the balance of the brain in
terms of local specialisation and global integration, the glob-
alIntegration and specialisation score are ratioed to give an
overall score of neural complexity.

4 EXPERIMENTS
In order to determine the impact of a cost on complexity on the
complexity and task performance of evolved robots, two sets of
experiments were conducted for comparison 1. In the first, which
will henceforth be referred to as the baseline experiment, evolu-
tion proceeded without a cost on complexity and in the second,
which will be referred to as the complexity cost experiment, a
cost on complexity was imposed during evaluation as described
in Section 3.5. In both experiments populations of one hundred
morphology-controller couplings (robots) were co-evolved (as de-
scribed in section 3.3) for locomotion for one hundred generations
in each of the twelve simulation environments described in Section
3.4 in order to further elucidate the effect of environmental com-
plexity on task performance and robot complexity as well as the
conditions under which complexity evolves. Ten runs were con-
ducted for each experiment. The experimental parameters common
to both experiments are summarised in Table 2.

This study made use of the open-source Robogen Framework’s
[3] evolution engine and physics simulator as the basis for the co-
evolution of robot morphologies and controllers and the evaluation
of robots in the simulation environments 2. Both experiments were
run on an Ubuntu Virtual Machine 3.

5 RESULTS AND DISCUSSION
For each environment, the average task performance, average com-
plexity, average maximum task performance and associated average
complexity of the populations evolved over the ten runs of the base-
line and complexity cost experiments are statistically compared for
1https://github.com/BrookeSte/EVOBAB
2http://robogen.org/
38 Intel(R) Xeon(R) Gold 6254 CPUs @ 3.10GHz. 32GB RAM.

https://github.com/BrookeSte/EVOBAB
http://robogen.org/
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𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

Experiment Complexity Cost or Baseline
Runs 10

Simulation Time Default 10.0s (If complexity cost experiment -
simulation time adjusted as described in section 3.5)

Environment Environment Parameters specified in table 1
𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

Evolution Mode Full-Bodied (body-brain co-evolution)
Use Seed Robot True 4

Population Size 100
Generations 100

Parent Selection Deterministic Tournament Selection
(based on novelty score)

Tournament Size 2
Number of Parents (𝜇) 100
Number of offspring (𝜆) 100
Mutation Probability .3
Probability of addition
to Novelty Archive .3

Replacement Strategy Plus replacement [15] (based on novelty score)
Novelty Archive Size Maximum size of 50
Table 2: Table summarising the Experiment Parameters

each environment to determine the impact of a cost on complex-
ity. Application of the Shapiro-Wilk test [41] showed that these
datasets do not necessarily exhibit normal distributions for all en-
vironments. Hence, the non-parametric Mann-Whitney U-test [32]
(p<0.05) was used to test for statistical difference. Levene’s test [31]
was performed on the datasets prior to comparison to ensure that
the assumption of equal variances required by the Mann-Whitney
U-test was met. The outcomes of these comparisons is recorded in
table 3.

As seen in table 3, almost all comparisons between the baseline
and complexity cost experiments show no statistical difference
between the experiments. The lack of statistical difference between
the two experiments in terms of average evolved complexity is to
be expected as in both experiments the selective pressure is solely
toward novel behaviours. However, we see that in environment
6 and 7 there is a statistical difference in the average complexity
evolved over the ten runs in the different experiments. This is
hypothesized to be a result of the relatively low number of repeats.

Due to the energy cost imposed on the most complex individ-
uals of the population during evolution, we may have predicted
a difference in the average task performance, best average task
performance and perhaps, consequently the average complexity
associated with best task performance between the baseline and
complexity cost experiments. However, we observe in figures 4 and
3 as well as table 6 that the populations evolved by both experi-
ments show no statistical difference for these criteria for almost all
of the simulation environments in which evolution was conducted.
This may seem surprising, but this result could just be a result of
the explorative nature of novelty search enabling the search to find
similarly fit individuals in spite of the imposed cost on complex-
ity. Another possibility is that the energy cost was too lenient and
had negligible effect on the task performance of individuals during
simulation although conceptually this seems unlikely to be the case.

Since novelty is calculated with respect to the ending position the
robot achieves in simulation, the task performance of the robot has

some bearing on the novelty score it achieves. In retrospect the task
performance without an imposed cost on complexity should have
been recorded in addition to task performance with an imposed
energy cost for each individual in the complexity cost experiment.
As it stands, the results do not provide enough evidence to rule
out the possibility that more efficient task performance evolved
in the complexity cost experiment allowing individuals of similar
complexity to those evolved in the baseline experiment to achieve
statistically similar task performance in spite of the energy cost.

In order to further elucidate the environmental conditions under
which complexity evolves Mann-Whitney U-tests [32] (p<=0.05)
were used to test for statistical difference between the complex-
ity associated with best task performance between environments
within the same set (i.e. same obstacle configuration) and between
environments with the same terrain friction. The results of these
comparisons can be seen in table 4 and 5. In both environment set
1 (flat) and environment set 3 (irregular obstacles) all the average
highest complexity is statistically comparable indicating that terrain
friction had no impact on the complexity of the fittest individual.
In figure 3 we see that set 1 exhibits the highest task performance
whilst set 3 exhibits the lowest suggesting that friction played little
to no role in the first instance because the environment configu-
ration made the task too easy and in the second instance for the
opposite reason. In set 2 lower friction correlates with lower com-
plexity whilst the opposite is true for set 4. From these results we
may conclude that terrain friction cannot necessarily be considered
as a marker of environmental complexity in isolation of the rest of
the environmental configuration.

Where environments with the same friction were compared (i.e.
the obstacle configuration is what differs) in general, the environ-
ments in set 3 were associated with greater evolved complexity. The
environments in set 2 were comparable with those in set 3 in terms
of evolved complexity, except at the lowest terrain friction where
the environments in set 3 evolved resulted in the evolution of higher
complexity. From this we can conclude that the irregularly space
and sized obstacles of set 3 pose the greatest challenge resulting in
relatively higher complexity robots just to achieve relatively low
task performance. In general the second highest complexity was
induced by environment set 2 while environment set 1 and 4 were
statistically comparable in terms of the complexity evolved.

Looking at Figure 4 we clearly see that the average complexity
associated with best task performance does not exceed even half
of the possible complexity score. There are no other studies which
measured overall robot complexity with which we can compare
our results and complexity metric. It is very possible that the main
reason for the relatively low complexity scores in general is that
the upper bound of morphological complexity was too generous
and as a result the morphological complexity scores are scaled
down too harshly. On the other hand, previous work has noted the
big influence the definition of the phenotype has over complexity
values [1]. Since in this work, selection is behaviour-based it is also
possible that the definition of behaviour did not warrant higher
complexity values. Regardless, one of the shortcomings of this
project is the lack of comparison and evaluation of this complexity
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Environment Number Average Task Performance Average Complexity Best Task Performance Complexity Associated with
Best Task Performance

1 B == CC B == CC B == CC B == CC
2 B == CC B == CC B > CC B == CC
3 B == CC B == CC B == CC B == CC
4 B == CC B == CC B == CC B == CC
5 B == CC B == CC B == CC B == CC
6 B == CC B < CC B == CC B < CC
7 B == CC B > CC B > CC B > CC
8 B == CC B == CC B == CC B == CC
9 B == CC B == CC B == CC B == CC
10 B == CC B == CC B == CC B == CC
11 B == CC B == CC B == CC B == CC
12 B == CC B == CC B == CC B == CC

Table 3: Statistical task performance and robotic complexity comparisons of the average and best evolved robots in the Base-
line (B) and Complexity Cost (CC) experiments for all simulation environments. == : Statistically Comparable. <,>: Statistical
Difference, less than or more than used to indicate the dataset with the higher median value. Robot complexity is defined in
Section 3.6 and Task Performance is defined in Section 3.4.1.

Figure 3: Average maximum task performance of the Baseline versus Complexity Cost experiments in all environments

Figure 4: Average maximum complexity (complexity associated with maximum task performance) of the Baseline versus
Complexity Cost experiments in all environments

metric as a measure of overall complexity. Unfortunately, designing and implementing another metric for comparison was beyond the
scope of this project.
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𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑜 𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝐸𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠 𝑊 𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑆𝑎𝑚𝑒 𝑆𝑒𝑡

𝑆𝑒𝑡 1 𝑆𝑒𝑡 2 𝑆𝑒𝑡 3 𝑆𝑒𝑡 4
1 2 3 4 5 6 7 8 9 10 11 12

1 - 1==2 1==3 4 - 4==5 4>6 7 - 7==8 7==9 10 - 10==11 10<12
2 2==1 - 2==3 5 5==4 - 5>6 8 8==7 - 8==9 11 11==10 - 11<12
3 3==1 3==2 - 6 6<4 6<5 - 9 9==7 9==8 - 12 12>10 12>11 -

Table 4: Statistical comparisons (between environments with the same obstacle configuration) of the average highest com-
plexity evolved in the baseline experiment. == indicates the average highest complexity evolved in the two environments is
statistically comparable. Where the results are not statistically comparable (p<=0.05), < and > are used to indicate the environ-
ment in which the statistically larger highest average complexity was evolved

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑜 𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝐸𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠 𝑊 𝑖𝑡ℎ 𝑡ℎ𝑒 𝑆𝑎𝑚𝑒 𝑇𝑒𝑟𝑟𝑎𝑖𝑛 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑒𝑟𝑟𝑎𝑖𝑛 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 : 1.0 𝑇𝑒𝑟𝑟𝑎𝑖𝑛 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 : 0.6 𝑇𝑒𝑟𝑟𝑎𝑖𝑛 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 : 0.2
1 4 7 10 2 5 8 11 3 6 9 12

1 - 1==4 1<7 1==10 2 - 2==5 2==8 2==11 3 - 3>6 3==9 3==12
4 4==1 - 4==7 4>10 5 5==2 - 5==8 5>11 6 6<3 - 6<9 6<12
7 7>1 7==4 - 7>10 8 8==2 8==5 - 8>11 9 9==3 9>6 - 9==12
10 10==1 10<4 10<7 - 11 11==2 11<5 11<8 - 12 12==3 12>6 12==9 -

Table 5: Statistical comparisons (between environments of the same friction) of the average highest complexity evolved in the
baseline experiment. ==, < and > have the same meaning as in table 4

Figure 5: The average maximum complexity achieved per
generation over all runs of the baseline experiment is plot-
ted for all simulation environments

Figure 5 plots the average maximum complexity score achieved
by a member of the robot population over all generations for the
baseline experiment. We can clearly see that the complexity of the
maximally complex individual does not necessarily tend toward
increasing complexity over time, hence the arrow of complexity
hypothesis does not hold for this evolutionary system. Miconi [33]
presents a detailed and convincing argument that the arrow of
complexity does occur in evolution and that it is most reasonably
interpreted as the result of a passive trend than a driven one. Mi-
coni, specifies the conditions under which Darwinian evolution
will generate a sustained trend of increasing maximum complexity.
One of the requirements is that at any given time, the probability of
mutation toward successful designs of higher and equal complexity

should be higher than that of reaching designs that would make the
starting points of these jumps unsuccessful. In this study, selection
by novelty does not necessarily have a higher probability of select-
ing successful designs of equal or higher complexity. Therefore,
we hypothesize that the contravention of this requirement is the
reason why the arrow of complexity hypothesis doesn’t hold for
this system as the other noted requirements are met.

6 CONCLUSIONS AND FUTUREWORK
The results demonstrate that the imposition of an energy cost had
practically no effect on the average complexity and complexity as-
sociated with best task performance of evolved robots as compared
with populations evolved without such a cost on complexity. Addi-
tionally, the arrow of complexity hypothesis was shown not to hold
for this evolutionary system and as a result no predictions on the
maximal complexity evolved in such a system can easily be made.
Perhaps surprisingly, the results also show that average task per-
formance and best average task performance were almost entirely
unaffected by the cost on complexity. However, we cannot entirely
rule out the possibility that the imposition of a cost on complexity
allowed the evolution of more efficient task performance. Future
work would do well to extend this research by investigating the
impact of a complexity cost imposed through multi-objective selec-
tion selecting for novelty and lower complexity thus introducing
an explicit selective pressure toward lower complexity.

In terms of the environmental conditions under which com-
plexity evolves it was found that obstacles in the environment
predictably necessitated a greater overall complexity for optimal
task performance, whilst terrain friction was shown to not have a
predictable impact on optimal task performance or the complexity
of optimal robots. Irregularly sized and spaced obstacles posed the
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greatest task complexity, followed by the regularly spaced, low ob-
stacles. It was also discovered that the average highest complexity
evolved in the tilted environment was statistically comparable to
that evolved in the flat environment where terrain friction was the
same.
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Table 6: Table showing the p-value produced by the Mann-Whitney U-test comparing the populations evolved in the baseline
and complexity cost experiments for the ten repeated runs in each environment in terms of average fitness (task perfor-
mance), average robot complexity, best fitness and the complexity of the most fit individuals. Cells are highlighted where the
p-value<=0.05 indicating a statistical difference.

Environment Average Fitness Average Robot Complexity Best Fitness Complexity Associated with Best Fitness

1 0.092938 0.260261 0.153745 0.192247
2 0.060612 0.311588 0.037831 0.454861
3 0.454861 0.395668 0.454861 0.236338
4 0.236338 0.172352 0.338792 0.213678
5 0.311588 0.338792 0.285375 0.236171
6 0.285375 0.032011 0.285375 0.006992
7 0.192337 0.012874 0.022577 0.020435
8 0.484925 0.285375 0.425053 0.425053
9 0.120661 0.236338 0.106147 0.425053
10 0.192337 0.285375 0.192337 0.454827
11 0.192337 0.080986 0.236338 0.425053
12 0.213678 0.260261 0.192337 0.051860

Figure 6: Graphs showing the average task performance of the population over all generations in all 12 environments for the
baseline and complexity cost experiments
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Figure 7: Graphs showing the average complexity of the population over all generations in all 12 environments for the baseline
and complexity cost experiments

Figure 8: Graphs showing the average maximum task performance of the population over all generations in all 12 environ-
ments over all 10 runs for the baseline and complexity cost experiments
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Figure 9: Graphs showing the average complexity associated with the fittest individual of the population over all generations
in all 12 environments over all 10 runs for the baseline and complexity cost experiments
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