

CS/IT Honours

Final Paper 2020

Title: Software Implementation of Vision Healthcare Management System

Author: Justin Dorman

Project Abbreviation: Vision

Supervisor(s): Aslam Safla

Category Min Max Chosen

Requirement Analysis and Design 0 20 20

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80 80

DEPARTMENT OF COMPUTER

SCIENCE

file:///C:/Users/Justin%20Dorman/Downloads/PaperCoverSheet.docx%23_Overall_General_Project

Software Implementation of Vision Healthcare

Management System
 Justin Dorman

Computer Science Department

 drmjus001@myuct.ac.za

 University of Cape Town

 Cape Town, South Africa

ABSTRACT

This report intends to provide detailed insight into the software

development process behind the Vision Health Care Management

System. This paper introduces the organisation, Vision Medical

Suite (VMS) and identifies the inherent problems with their current

paper based information capture system. The aims are subsequently

formulated, with a fundamental objective to develop a fully

functioning web application that will streamline the operations of

VMS. The paper then goes on to compare related systems as well

as evaluate various aspects of the system and associated

technologies. Requirements stipulated by the organisation are

discussed and the design of the system is described based off of

these requirements. The process of implementation is then detailed

to portray how the system was developed using the agile

methodology and React, NodeJS and MySQL as the underlying

tech stack. Finally, findings from the usability and functional

testing procedures are discussed and analysed to ultimately

conclude that the system is sufficiently usable and functionally

effective. Thus, the project can be deemed successful, meaning that

it is ready to be deployed into production and materialise the aims.

KEYWORDS

Healthcare management system, Web application development,

Database, Application server, Authentication, Authorisation.

1 BACKGROUND AND INTRODUCTION

1.1 Background

Vision Medical Suite (VMS) is a Non-Profit Company that

provides free medical and dental care to patients from their

affiliated beneficiaries, being orphanages, frail care centres and

homes for the mentally and physically challenged. They do this by

engaging healthcare professionals to voluntarily provide their

services. VMS is classified as a health care service provider and

possesses a strong vision to provide high quality treatment to

vulnerable sectors of South African society. Their ultimate purpose

is to create a space where high quality care is determined by needs

rather than financials [1]. These services are meant to be done by

the state; however, the problem lies with long waiting times.

The services that VMS offer are split into two broad categories

being sedation clinics and general practices. The sedation clinics

are held on a monthly basis with a focus on providing medical and

dental care to children and adults that are physically or mentally

challenged. These services are provided to patients from the

beneficiaries as well as those who are unable to afford health care.

While the clinic does allow for walk ins, the vast majority of

patients are booked in advance. On average, for each sedation

clinic, roughly one hundred patients are attended to. A visit at the

clinic comprises of various phases which the patient transitions

through. At each phase of the visit, different staff members are

actively involved in logging and capturing important information

relating to the visit. The general practice services take place on a

daily basis. Health workers who have their own private practices

volunteer their services to patients from the aforementioned

beneficiaries. There are no segmented phases for a general practice

visit, but there are a range of information forms to be captured.

1.2 Problem Statement

As it stands, VMS manages all their operations manually through a

paper-based information capture system. This brings about major

inefficiencies in the fast paced work environment that they operate

in, and consequentially reduces their level of performance. The

method is cumbersome, outdated and results in increased form

capture time, decreased quality of records and limitations with

respect to sharing and access of patient data. It becomes

increasingly time consuming for staff members to find the correct

sheet of paper, physically write out all the information and try keep

everything coherently organised. Further inefficiencies are

introduced when trying to manage appointments, locate patients’

previous visit information and keep track of operations. It is clear

that VMS is in need of a digital system to efficiently and effectively

keep track of patients’ visits and manage operations. VMS is an

NPO and hence has a limited budget. They cannot afford to

outsource the development of this application and have therefore

liaised with the University of Cape Town to assist. As a result,

myself and two other students have been allocated the development

of this system for our honours project.

1.3 Aim Formulation

We, as a team, have been presented with the following task: Create

an online health care management system that streamlines the

management of staff, patients and the various processes executed

in VMS’s operations. This project will expose us to exciting new

tech stack and provide us with experience into real-world, full stack

development. On top of this, we will be providing a respectable

social impact by helping out an incredible NPO that provides free

health care to the vulnerable sector of society. We are thus highly

motivated to develop the best application we possibly can. The

ultimate aim for the project is to develop a fully functional, full

stack application that will be used by VMS to increase their

efficiency, better manage their operations and ultimately treat more

patients. With all this in mind, the specific project aims can be

depicted as follows:

• Increase efficiency and efficacy: Through the implementation of

the proposed system, this project aims to reduce the amount of time

spent manually capturing data into paper forms. Through this, it is

hoped to increase the level of performance and effectiveness of

operations.

• Increase quality of data: Paper-based records are often of poor

quality as they are prone to errors and untidiness. Digital records

hold to a consistent quality, and allow for validation, thereby

ensuring greater quality of ongoing records.

• Increase ease of access and analysis: Paper records require

physical storage which inevitably restricts sharing of records across

departments. Additionally, it increases the complexity for data

analysis. Electronic storage will allow for all information to be

stored centrally, thereby increasing access, allowing for detailed

reports and promoting interoperability.

The end goal for this project is to create a robust and scalable

system that is ready for deployment into production. For this to

occur, it will have to meet all functional and non-functional

requirements and be suitably usable in a fast-paced environment.

1.4 Ethical, Professional and Legal Issues

1.4.1 Ethical

Ethical clearance was obtained from the Faculty of Science

Research Ethics Committee to conduct user tests. Prior to each test,

participants were informed of the nature of the project and the

purpose of the test. Following this, they were asked to sign a written

consent form. All data collected was kept anonymised and

recordings were kept confidential. There were no risks associated

with the testing phase as the usability testing was done over a video

conference call in order to avoid the risk of exposure to Covid-19.

Testing of the application was done using fake data, and thus there

was no danger of being able to identify a person. There are ethical

issues concerning testing medical professionals during a pandemic,

as it takes valuable time away from them. This was taken into

account, and the situation was monitored closely throughout the

development. It was eventually decided that the testing of these

users should be conducted at the end of development, as Covid

cases began to lessen. Additionally, it was ensured that the tests

were conducted efficiently, minimising wastage of time.

1.4.2 Professional

The limited budget of VMS has forced the team to undergo the

development of the system using free tools and software. When the

system is completed and deployed, it will be owned by UCT and

Vision Medical Suite. The system will be made live and handed

over with a clear database. VMS will then be able to add and

manage all data independently. VMS has proposed that after the

system is developed, they will pay the team a monthly fee for

maintenance and potential evolution of the system. Additionally,

they are willing to pay for a business analytics service to generate

reports on the data captured in the system.

1.4.3 Legal

The deployed application will be dealing with real, sensitive patient

data. The application thus needs to be designed with the assurance

of security of information and the appropriate role-based access

configuration, in order to comply with Department of Health’s

requirements around patient data [3]. To do this, the application

was implemented using recognised and established security

practices. Authentication, authorisation and encryption were

implemented, to ensure access control and confidentiality. The

system also needs to comply with the POPI act which states how

institutions should act when collecting, processing, storing and

sharing an entity’s personal information, to ensure accountability

[2]. In order to comply, the system ensures that information is made

available only to authorised users. Additionally, adequate controls

and measures were put in place to safeguard patient information.

1.5 Structure of Report

I was involved in the following areas of the project: database

creation and management, authentication, authorisation (privacy

and confidentiality) and backend development. This report will

focus solely on these aspects of the system. To progress, an

overview and analysis will be drawn on the aforementioned

sections along with its related fields and technologies. Additionally,

related open-source projects will be discussed. Following this, an

overview of the system design will be portrayed along with a more

detailed design into the database and application server.

Subsequently, implementation will be described, explaining the

methodologies and tech stack used to develop the system, followed

by a more technical description of how the features were

implemented. Testing methodologies along with its results and

findings will then be discussed and analysed, which will allow for

the conclusions to be made. Finally, a reflection of the development

process will be given along with recommendations for those who

wish to replicate such a project.

2 LITERATURE REVIEW

2.1 Type of Application to Be Developed

A web application would be the most feasible and most appropriate

choice to develop the Vision Management System. Web

applications serve many advantages over desktop applications,

including being easy to update, cost effective, compatible across

multiple platforms and highly accessible. More specifically, a

single-page web application is most ideal, as it is appropriate in

VMS’s case and serves the advantages over multi-page applications

of being fast, responsive, and simplified. [4, 5, 6]

2. 2 Database

Due to the functional capacity of the proposed application, a

dynamic web application is required, along with a database.

Incorporating a database allows for easy access, high scalability,

fast queries, multiple users, flexibility, and less room for error [7].

Having a database is essential for any interactive system being

created. It is imperative to follow best practices for a scalable, high

performance application. The two appropriate database types for

VMS’s case are SQL and NoSQL databases. The Vision

application requires complex queries, reports and relationships

between data types. Despite NoSQL’s impressive scalability and

high performance, SQL databases offer stability, assurance of data

integrity and support for relationships between data items and

would thus be a better fit for VMS’s requirements. Furthermore, an

SQL database will work well with VMS’s application, as the data

itself is very structured. Finally, the format of how data is

transmitted should be decided for standardisation purposes. It is

important to decide on a fast, reliable, and easy to use standardised

format to interchange data between the client and the server.

Compared to XML, JSON format is the better alternative due to its

speed of transfer and intuitive nature.

2.3 Application Server

Using REST architecture will bring about the benefits of

lightweight web services, simplicity, scalability and universal

presence. Compared to SOAP architecture, REST allows for a

greater variety of data formats, easy integration with websites and

is generally faster as well as uses less bandwidth. [14]

2.4 Authentication and Authorisation

Authentication is vital for securing a web application and should be

implemented in the best possible way. Token-based authentication

using JSON Web Tokens is a better alternative over cookie-based

authentication due to its stateless nature, scalability, high

performance, mobile friendliness, and its necessity when using

single-page applications. To further increase security, token

refreshing should be implemented, and passwords should be stored

securely and hashed accordingly. [9,10,11]

Authorisation acts as an extremely important mechanism to

introduce privacy and confidentiality in the application. It is

especially prevalent for VMS, due to the sensitive patient

information and doctor-patient confidentiality that needs to be

managed. Identity management should thus be set up so an

authenticated user gains all the permissions from their respective

role and will only be allowed access to certain resources based on

the permissions embedded in such a role [12].

2.5 Related Work

Upon investigating the possibility of using open-source systems

and incorporating the functionalities stipulated by VMS, it was

found to be counterproductive. The systems OpenMRS and

OpenVista were analysed, and it was determined that their services

were on a more general management scale and catered for larger

organisations with many departments. Conversely, VMS requires a

more fine-grained, tailored application to manage their unique

services which target specific beneficiaries. With that in mind,

manipulating the codebase to incorporate VMS’s specific

requirements will be inefficient, as a lot of time will go into

understanding the system and changing code. Additionally, there

are more security risks as the code is made available to the public,

making it easier for hackers to find exploits. Developing a system

from scratch, tailored specifically for VMS will allow for greater

customisation and control over the system. This will improve the

efficiency of the system as the exact requirements will be provided

and implemented using best practices available. Additionally, it

will allow for a better user interface and user experience. The

interfaces of the aforementioned open-source systems are not so

user-friendly or easy to use, which would make it difficult to use in

a fast-paced environment. [13]

3 REQUIREMENTS ANALYSIS AND DESIGN

3.1 Requirements Analysis

Prior to designing the system, requirements analysis had to take

place. During this phase, user expectations were defined in terms

of functional and non-functional requirements. These requirements

define the function of the system from the client’s perspective, and

establish the system’s functionality, constraints and goals [48].

3.1.1 Requirements Specification

The specification phase is where the system’s services, constraints

and goals are established. The team underwent this process by

collaborating directly with the project proposer. Initially, a two

hour video conference was held where the proposer outlined all his

expectations for the project, including the users of the system, how

such users will use the system, and the specific information

inherent to the system. The meeting began with the proposer

explaining the underlying conceptual model to provide us with a

holistic understanding of the what the system should do. Following

this he went through an existing hospital management system

which is very similar in nature to the proposed system. This

provided us with a list of specific functional requirements for the

system, along with all the information that should be included. The

meeting was recorded, which allowed us to refer back to it in order

to coherently outline the specific requirements. Following the agile

methodology, further meetings were regularly held to clarify

certain requirements and possibly add additional requirements.

3.1.2 Requirements Modelling

The modelling phase incorporated organising the requirements in a

systematic and comprehensible manner. To initiate this phase, the

team compiled a document with all the screenshots of the example

system presented in the initial specification meeting, along with a

list of associated requirements. This allowed us to outline detailed

requirements for every aspect of the system. Following this, a use

case diagram was compiled to provide an overview of the usage

requirements for the system (refer to Appendix A to see the use

case diagram). This proved to be a useful tool for the

implementation as it gave a good idea of the various actions that

should be implemented, from a user’s perspective. After compiling

all the requirements together, one of the team members worked on

designing the initial interface prototype of the system. This was

designed to be interactive and served as a highly useful tool in

visually representing the requirements to the proposer and getting

a feel how the user would interact with the system. All the pages of

the final interface design of the system can be viewed in Appendix

H. The proposer provided feedback which was taken into account

in all aspects of the design phase. Making use of the agile,

evolutionary prototyping methodology, subsequent prototypes

were then produced, incorporating the feedback provided for each

iteration. Based off the iterative feedback, improvements were

made, or additional features were added until the final design was

accepted. An emphasis was placed to ensure the accommodation of

changing requirements [49].

3.1.3 System Outcome

Based off the requirements analysis, it was determined that the

system should be designed as an interactive application, including

functionality to manage processes for both the sedation clinic and

general practice. Fundamentally, VMS requires a patient-centric

system that can manage appointments, check in patients for a visit,

capture their records and manage their transition throughout the

visit. It is imperative that the application is as usable and efficient

as possible, as VMS operates in a fast paced environment. The

application must accommodate two levels of users, namely staff

and admin. The staff are effectively the health workers who play

the role of actively managing the operations at the clinics and

general practices. They are ultimately responsible for controlling

the patients’ movements and capturing their information. Staff

roles include doctor, dentist, dental assistant, anaesthetist, nurse

and allied health. The application should allow these users to

capture necessary information associated with a patient’s visit,

which then gets stored in a database. For the general practice

component, patients are managed individually. To the contrary, the

mass sedation clinic requires multiple patients to be managed at

once and should thus be split into segmented phases. Each phase

should contain a list of patients waiting for the respective activity,

ordered their urgency and waiting time. The users should be able to

select patients from these lists and capture information relevant to

the phase they are in. Once the required information is captured,

users should then be able to move the appropriate patient to the next

phase, until the visit is complete, and the patient exits the clinic. An

admin panel is required, where higher organisational users should

be able to manage high level operations relating to the system.

3.1.4 Functional requirements

The specific functional requirements can be drawn from the final,

accepted design, summarised as follows:

General system requirements:

The user should have the option to log into the system and toggle

between the sedation clinic and general practice components.

Available to both components should be the option to register a

patient and view a patient’s profile, displaying their information in

addition to all their past visits. Users should be able to view/edit the

patient information as well as each visit’s information. On top of

all of this, authentication, authorisation, validation and error

handling should be incorporated in the system.

Sedation clinic requirements:

The sedation clinic component should contain a dashboard

displaying a list of all patients in the system and all visits in the

current clinic. This should be visualised in a table format, along

with all associated visit and patient information. For the patient list,

users should have the option to book an appointment and view the

profile for each patient. For the visits list, users should have the

same options as above, along with the option to view visit forms,

cancel the visit and jump to the current location of the patient in the

visit. Furthermore, an appointment manager is required, which

should display a list of all upcoming clinics and their associated

appointments. Users should have the option to add, edit and remove

appointments for a selected clinic as well as have the option to

change the clinic capacity. Additionally, an option should be

provided to check-in a patient and then start their visit (only if the

clinic is scheduled for the current date). For each phase of the clinic,

there should exist a table displaying the patients that are waiting in

that phase, along with associated visit and patient information. The

phases include waiting for triage, waiting for theatre, in theatre,

waiting for disposition and waiting for exit. For each patient in the

waiting list, an option should be provided to transfer the patients to

the next or previous phase which, when complete, should

automatically log the time of transfer. Additionally, the user should

be able to navigate to the visit forms and capture/edit information

inherent to the visit. Included in the forms should be a voice to text

option and a search for ICD10 codes. The user should be able to

search through all existing ICD10 codes and add them to a table

displayed on the respective form capture screen.

General practice requirements:

The general practice component is required to have a dashboard

similar to that of the sedation clinic, displaying patients and current

day’s visits. For the general practice component, every patient gets

assigned to one or more staff member. The signed in staff member

should thus only be able to view their assigned patients in the table.

For each row in the able, the user should have the option to add

appointments and view patient profiles. Staff members should only

be able to serve their assigned patients in the general practice and

should hence be limited to only view and edit their own patients’

information. General practice requires an appointment manager,

but with a full calendar interface as it is a daily practice. The signed

in user should be able to view their appointments for any day as

well as add, edit and delete appointments. Additionally, the option

should be provided to start a visit for an appointment on the current

day. For visits that are started, the user should have the option to

navigate to the visit forms specific to the selected general practice

visit and capture as well as edit information.

Admin Panel requirements:

The admin panel should be accessible only to authenticated admin

users. The panel must include a patient and staff table where the

user can view all patients and staff and edit/delete their information.

Additionally, admin should be the only users able to register a staff

member which, upon success, sends an email prompting the staff

member to change their password. A dynamic data component

should be provided to allow the admin to view, add, edit and delete

dynamic data, including clinic locations, beneficiaries, hospitals

and exit locations. A sedation clinic component is required to view

all past and upcoming clinics, with the option to edit, delete and

end a specific clinic. When a clinic is ended, all remaining patients

should get removed from the waiting lists, all remaining

appointments should be moved to the next available clinic and the

clinic should be marked as complete. Finally, a general practice

component should be provided to view all staff members and their

assigned patients and provide the option to add and remove links.

3.1.5 Non-Functional requirements

Assurance of data privacy and confidentiality, security of system,

high performance, fast response times, seamless UI/UX, accuracy,

reliability and compatibility for all screen sizes.

3.2 Design Process

The next step is to design and detail information about the system,

to ultimately prepare for the implementation phase.

3.2.1 Overall System Architecture Design

To effectively understand the system and how it works, it is

important to provide a brief overview of the system architecture and

how the different parts of the system collaboratively function to

achieve the aforementioned requirements. The system makes use

of a unidirectional, layered architecture, consisting of a frontend as

the UI, an API as the business logic and an interactive database as

the data layer. The API (Application Programming Interface) is

software intermediary developed on the application server, which

acts as the middleman of the system. It is responsible for directly

communicating with the database and processing the HTTP

requests that are fired from the frontend application. Essentially,

the API allows the frontend and database to communicate with each

other, indirectly. The API directly interacts with the database and

gathers the appropriate data to be sent back as a response to the

frontend application. Subsequently, the response data gets stored in

a global storage state and dealt with to visually present to the user.

JSON is used as the standardised format to interchange data

between the client and the server. [45]

The database was designed in accordance with the relational model

of data, taking into account normalisation principles. The server

was then designed, conforming to a REST (Representational State

Transfer) architecture to incorporate universal principles. Finally,

the frontend application was designed as a component based

system, ensuring code reusability and maintainability. The

component tree for the frontend structure can be viewed in

Appendix B and the backend structure in Appendix C. As my

section of the project deals exclusively with the database and

application server, only these sections will be further discussed.

3.2.2 Database Design

Database design is the process of producing a detailed model of a

database. Principally, the database design process encompasses

designing the logic behind the base structure of the DBMS being

used. The most crucial part of the development of a web application

is the design of the database, as it provides the foundation for the

application to be developed. Small decisions in the beginning have

a huge cumulative impact later on in the development [50]. It is

therefore imperative for the database design process to align with

the agile methodology that was adopted in the requirements

analysis phase. The interface design acted as a highly useful

representation of the data that is required to be stored in the

database. Each prototype in the evolution was thoroughly analysed

to determine the specific information that should be incorporated in

the database, until the final prototype was accepted.

To visualise the design of the database, an entity-relationship

diagram (ERD) was created (see Appendix D). ERD’s act as a

highly useful framework to create and manipulate abstract and

conceptual representations of data. Benefits arising from the use of

ERD’s include efficient communication, visual representation,

easy understanding and high flexibility [15]. For each agile

iteration, the data to be stored was gathered and divided into

subject-based tables. Tables include patients, staff, admin, sedation

visits, general practice visits, appointments, waiting lists and all

information inherent to the respective visit, grouped by subject

area. A unique primary key was assigned to each table. To maintain

consistency, a non-null, auto incrementing integer was used for

each table. Using integers as primary keys allows for easy and fast

indexing. Following the creation of the tables, relationships were

formed. The visits tables (both sedation visits and general practice

visits) form the centre of the connection network. A one-to-many

relationship exists between patients and visits, as one patient can be

in many visits, but each visit can only contain one patient. The same

logic applies to the relationship between appointments and patients.

To map out the relationship between the information tables and

their associated visit (either sedation or general practice), a one-to-

one relationship was created. The reason for this is because all

information captured for a patient is unique to its associated visit.

There is an indirect relationship between the information captured

for the visit and the associated patient. A many-to-many

relationship was created between the procedure’s information table

and staff. The reason behind this is because each procedure can

have many staff members tagged, and each staff member can be

involved in many procedures. The same logic applies to procedures

and ICD10 codes. To form the connections, bridge tables were used

[16]. The final ERD in Appendix D visually represents the design

and structure of the database. It provides a more comprehensive and

intuitive understanding of the structure and relationships inherent

to the database.

Following the creation of the database structure, normalisation

principles were applied to reduce data redundancy and improve

data integrity. Where appropriate, more columns were added, new

tables were created to form new relationships and large tables were

split into smaller tables. Doing so ultimately ensured that the design

conforms to a level of normalisation. [17, 18]

3.2.3 Application Server Design

The architectural design of the application server is imperative to

viably sustain the project in the long run. A good architecture

allows for clean, reusable code and faster development speed.

Additionally, it helps avoid repetitions and makes it easier to add

new features into the applications [20]. At a fundamental level, the

REST architectural style was used to design the application server,

as motivated in the literature review section. The server was

designed using HTTP (Hypertext Transfer Protocol) as the

underlying protocol, where HTTP requests get used for all CRUD

(create, read, update and delete) operations. Every request includes

all the necessary information for the server to respond. The server

is thus stateless, meaning that client context is never stored on the

server between requests, ultimately improving scalability. The

following constraints were considered as design rules when

designing the server: uniform contract between APIs of the server

– API’s created should be similar in nature; server and client must

be independent; no client context shall be stored on the server

between requests; well managed caching and finally, layered

system implementation. [19]

Once the REST architecture design principles were taken into

account, the next step was to design the file structure of the server.

The starting file, server.js, which is the core of the application, was

created and stored in the root folder, as every other file is dependent

on it. Following the creation of the application file, the next most

important process was to manage the configuration and connection

to the database. A separate config folder was created, with a file

containing all the details to create the connection to the database.

Another folder for the database was created, with a file that is

responsible for creating a singleton instance of the database by

exporting a connection [20]. Following this, a routes folder was

created, containing all files that define the API. In these files,

subject related endpoints, along with its logic, were implemented

in each respective route file. Furthermore, a middleware folder was

created for any custom middleware file that is required, as well as

a shared folder for files used across multiple components. A .env

file also was formulated, to store all private, confidential values

such as credentials and secrets. This file acts as a secure

environment config section for the project, in which only invited

collaborators can see. [21, 22, 23, 24, 25]

Through this file structure, the role of each component is clearly

defined, emphasising the separation of concerns design principle

and adherence to the component based structure. Furthermore, files

relating to a single feature are grouped together, allowing for code

reuse [22]. The response messages sent back to the frontend also

had to be designed appropriately and consistently. Standard REST

API response codes were used to identify the specific scenario. In

the body of the response, either the requested resource or a

customised message about the results was returned. [46]

4 SYSTEM AND IMPLEMENTATION

4.1 Approach

4.1.1 Tech Stack

To begin the implementation of the project, the team made use of

modern frameworks and technology in order to efficiently and

effectively materialise the requirements and design. To create and

manage the relational database, MySQL was used. The reason for

using MySQL is because of its scalability, high performance, high

availability, strong data protection, management ease, abundance

of support and open source freedom [26]. To develop the frontend

application, React.js was used. React is an open-source JavaScript

library used to build dynamic and engaging web interfaces for

single page applications. React was chosen primarily due to its fast

rendering allowing for incredibly fast speeds, which is important

for any management system. Additionally, React enables reuse of

components, provides clean abstraction and incorporates great state

management [27]. Node.js was used to develop the application

server. Node.js is an open source, server-side platform that executes

JavaScript code outside a web browser. It was chosen due to its fast

and scalable environment when dealing with multiple client

requests. Node.js is highly customisable and the data sync between

clients happens very fast. Additionally, React.js and Node.js work

very well together, as the React DOM has components designed

specifically to work with Node.js. Express was used as the web

application framework for Node.js, due to its minimal and flexible

nature, along with its robust set of features for web applications

[28]. To test the implemented API commands and verify the

responses through the implementation of the project, the toolchain

Postman was used. Finally, MySQL workbench was used as a

visual database design tool to interact directly with the database.

4.1.2 Development Methodology

To manage the software development process, the team made use

of the scrum framework, which is a sub-group of agile

methodology. The scrum team consisted of the development team,

the scrum master and the product owner. The development team

was made up of myself and the two other team members, working

together to deliver shippable increments at the end of each sprint.

The product owner was the proposer of the project, who conveyed

the requirements to us. Finally, our project supervisor acted as the

scrum master who helped facilitate meetings. There was no team

leader, but rather, we worked collaboratively to solve any

fundamental issues and problems. [29]

Each sprint was a total of two weeks in length. Prior to each sprint,

a thorough planning session took place, where the team would

determine which product backlog tasks would be included in the

sprint backlog, and who would be responsible for each task.

Segmented tasks were assigned, with the assurance that tasks could

be completed simultaneously with minimal dependencies on other

members’ sections. Jira, the task management tool, was used to

outline the tasks and track progress. Every workday, the team

would engage in a communication meeting where each member

would present their progress since the last meeting, planned work

before the next meeting and any problems they have experienced.

Additionally, a review was held with our supervisor on a weekly

basis, where he would monitor our progress and provide feedback

[29]. Finally, to allow for collaborative work, and code

management, our team made us of Git, the version control software.

4.2 Features Implementation

This section will speak about how the aforementioned functional

requirements were implemented, exclusive to my sections, being

backend development and database manipulation. The system was

implemented in a modular fashion, using best practices wherever

possible. The most efficient and effective algorithms and

techniques were used wherever possible to ensure scalability and

fast response times. Throughout the development, the codebase was

constantly commented and refactored, to make future

maintainability easier and aid in the intuitive understanding of the

implementation.

4.2.1 Environment Set Up

Before feature implementation could begin, the project

environment had to be set up and configured. To begin the process,

the MySQL database was created and configured appropriately.

The database schema was then created, and the SQL code was run

to generate all tables and relationships. Upon liaising with ICTS, a

virtual machine was set up on the UCT’s servers to run the MySQL

server instance. Subsequently, the whole team could connect to the

same centralised database and co-ordinate activities. Following

this, the server set up began. NPM (Node Package Manager), a

package manager for JavaScript, was used to aid package

installation, version management and dependency management. It

was used because of its significantly large software registry [30].

Within the application server, NPM was used to create a

package.json file (which holds metadata relevant to the project) and

install the framework, Express. The Express application was

created in the server.js file, which acts as the middleman for all

HTTP requests. Following the creation of the Express application,

appropriate middleware was initialised. The body-parser

middleware package was used to parse incoming JSON requests to

create a new body object before it can be handled. In addition, other

middleware was used including helmet: which helps secure HTTP

headers returned to the client, cors: which enables cross-domain

communication and morgan: which simplifies the process of

logging requests to the express application [31, 32, 33]. The route

files were then formulated, and router objects were declared and

exported within each file. Subsequently, every route was imported

in the server file and parsed to the Express application. For each

individual route, a path is specified which gets used to fire requests

to the respective endpoint.

4.2.2 Database Connection

For the server to communicate and interact with the database, a

connection needs to be made. For a large scale application such as

this one, it is imperative to use connection pooling. Connection

pooling is a data access pattern where database connections are

cached so that the connections can be reused with subsequent

requests, when required [34]. The pooled connection was made

using the MySQL driver which provides a built-in connection

pooling feature. Connection pooling allows for multiple queries to

be made within a transaction, and for data objects to be shared

between subsequent queries. By using connection pooling, the

performance of the application is increased significantly. The

getConnection() method was used to retrieve a connection from the

pool, and connection.release() was used to return a connection to

the pool after use. Connections are exported from the pool.js file,

which in turn is imported in every route class to allow for

communication with the database. [35]

4.2.3 Authentication and Authorisation

As specified in the requirements, only admin users should be able

to register new staff users. To implement this, a POST endpoint that

is made accessible to only admin users was created. Within this

endpoint, an SQL query gets sent to the database which

subsequently generates a new tuple in the staff table. The

information that gets populated in this tuple comes from the

information sent in the body of the request, along with a randomly

generated temporary password. Upon success, an email gets sent to

the newly registered staff member, prompting them to change their

password. The nodemailer module is used to send the email, via a

Gmail account. Embedded in the email is a magic link, that

navigates the user to a change password page when clicked. The

staff member can then change their password, which then updates

the respective row in the staff table. The password gets hashed prior

to it being saved in the database, making it confidential. The Bcrypt

password hashing function is used as it scales with computation

power and hashes every password with a salt, thereby making it

more secure. When a user signs in, they are located in the database

based on the entered username. The entered password is then

hashed and compared to the respective password value in the

database to determine whether the entered credentials are correct.

As justified previously, the system will make use of JWT’s to

implement authentication and authorisation. To begin the

implementation, a file called auth.js was set up for both normal

users and admin users, playing the role of an authentication service.

To generate and verify the JWT tokens, the jsonwebtoken module

was used. An access token secret which is used to sign the JWT

token was then generated using a complex random string. This

secret string gets stored in the .env file to keep it confidential. Upon

a successful sign in, the access token gets generated and signed with

the secret, along with the respective username and role embedded

in the JWT. The access token then gets returned to the frontend and

is subsequently stored in the local storage of the browser. This

token gets sent as a query parameter to the server, along with every

request. To manage the verification of these tokens on the server, a

middleware function called checkAuthToken was created. Every

request to the server gets parsed to this function before the endpoint

logic gets computed. This algorithm verifies the token, using the

token secret that is stored in the .env file. Once verified, the user

object gets attached to the request and calls the next() function to

continue with the endpoint logic computation. If the verification

fails, a 401 error is sent back to the frontend. Since the

authentication middleware binds the user object to the request, the

user role can be retrieved and checked, to implement authorisation.

Thus far, if the token had to be stolen, the users account would be

compromised. It is therefore imperative to implement token

expiration after a specific period of time. On the event of token

expiration, a new token needs to be generated so the user can keep

their session active. To do this, a refresh token was created on a

successful sign in, which then gets used to generate new access

tokens. The refresh token is sent back to the frontend along with

the access token and gets stored in local storage. The frontend

makes a call to the refresh token endpoint just before the access

token expires. The server then returns a newly generated access

token for the frontend to include in all subsequent requests [36].

Further authorisation constraints are placed in the general practice,

where staff members can only access information of their assigned

patients. This is done by making use of a bridge table that links

patients and staff. For all SQL queries that should adhere to this

authorisation constraint, the relationship between patients and staff

gets set, and only the table rows with matching keys are returned.

4.2.4 CRUD Operations

Each endpoint in the API retrieves a database connection from the

pool. Subsequently, SQL (Structured Query Language) is used to

communicate with the database, using the connection established.

For every endpoint, the appropriate SQL statements are created and

incorporated in the query that is sent to the database. When there is

specific data required to be retrieved from or added to a database, a

question mark is used as a placeholder in the SQL statement. An

array containing all of the user data is then additionally

incorporated in the database query, which then populates the

respective fields in the SQL statement (in order). Successful actions

will return the status code 200 or 201 (when creating new

resources), along with the requested resource in the response body.

If the request body from the frontend has invalid values or is of the

incorrect format, a bad request message gets returned with a status

code 400. If there is no token in the request, or if it the verification

fails, an unauthorised message gets returned with a status code 401.

Finally, if the action fails on the server side, an internal server error

message is returned, with a status code 500.

GET endpoints are used for read operations. Within these

endpoints, SELECT SQL queries are fired off to the database,

fetching the appropriate fields from the appropriate tables. JOIN

clauses are used to combine tuples from two or more tables based

on a pre-defined relationship. INNER JOINS are used to fetch

records that have matching values in both tables and LEFT/RIGHT

OUTER JOINS are used to return records when there is a match in

either the left or right table. To identify a specific resource in the

database, values are passed from the frontend, as parameters in the

URL. The API extracts these values and applies them to the

respective WHERE clauses in the SQL. When the results are

retrieved from the database, they are sent back as an array of JSON

objects embedded in the response, along with a status code of 200.

GET requests are used to fetch all form information for a particular

visit. To do this, queries are processed for each information table,

retrieving the appropriate fields to be returned. JOIN clauses are

used to manage the relationships, with the visit table being the

centre of connection. Each information table contains a foreign key

which gets matched to the primary key of the visit table. Hence, the

visit id is sent along with the request, which is then used to define

the relationship and populate the WHERE clause, to retrieve the

required information. The retrieval of information for each table on

the frontend works in a similar fashion, with the addition of

pagination. To implement pagination, the number of pages required

are calculated based on the limit specified by the frontend and the

number of elements retrieved from the database. This value is sent

back to the frontend which then deals with visualising the page

numbers. When the user selects a particular page, the frontend

sends the page number that the user selected, along with the table

limit. The server then responds with the appropriate segment of

results which is determined by the specified page number and limit.

Search functionality also uses GET requests. The search function

checks whether the appropriate fields contains the search input term

that is sent from the frontend as a query parameter. To implement

this, an SQL statement is used, selecting the appropriate fields and

adding expressions of interest together using CONCAT_WS(). The

concatenated value then gets checked against the specified term,

which is encapsulated in the wildcard ‘%.’ The results are then sent

back to the frontend in the response. [37, 38 39]

POST endpoints are used for create operations. To validate the

input, schema validation is implemented using the powerful and

extensive JOI data validation library. Within each route, a schema

gets created which encompasses an object containing all the keys

of the request body (the JSON object sent from the frontend), along

with the associated validation criteria defined. For those inputs

where a pre-defined validation method does not exist in the JOI

library, a customised regular expression is generated and used.

Before firing off the database query, the request body is parsed to

the schema, and each object is validated according to the specified

criteria. If the validation is successful, the SQL will be sent off to

the database, otherwise a bad request error message is returned to

the frontend. On successful validation, the retrieved database pool

is used to send off the appropriate INSERT SQL queries to the

database. Inputted data from the frontend is extracted from the

request body and stored in a newly generated array. This array then

gets embedded in the database query to populate the respective

fields in the SQL statement. Externally defining the array reduces

the risk of SQL injection attacks. [37, 39, 40]

PUT endpoints are used for update operations. Before firing off the

UPDATE SQL statement to the database, the aforementioned JOI

validation technique is utilised. The frontend sends the identifier of

the tuple to be updated as a parameter in the URL, along with the

appropriate information as an object in the request body. The

UPDATE query gets run, and the respective tuple in the database

gets updated with the new, inputted information. [37, 39]

DELETE endpoints are used for remove operations. The tuple

identifier gets sent as a parameter in the URL, and the DELETE

SQL statement then gets fired off to the database, subsequently

removing the respective tuple from the database.

4.2.5 Async Functions

Nodejs is asynchronous in nature, which ensures non-block code

execution. Asynchronous (async) code executes without having

any dependency and sequential order. This ultimately results in

faster execution due to the increased efficiency and throughput. It

is therefore imperative to implement asynchronous functions to

manage any dependencies in the code [41]. Where there are

multiple queries required that are dependent on each other, async

functions are needed to compute them in a sequential manner. To

do this, async functions incorporate the use of promises, which

represent the async task that will eventually finish. To work with

these promises, the async/await feature is used. The await function

is used to pause the code that comes after it when waiting for an

async function to finish. When the async function is complete, the

await function returns whatever the async function returns, and the

code continues to run. Await can only be used inside an async

function. GET requests incorporate the use of asynchronous

functions, where the response only gets returned to the frontend

when the results have been fetched from the database. [42]

Where there are multiple queries required that are not dependent on

each other, the promise.all function is utilised. This function takes

an array of promises as input. The function is then run and gets

resolved when all promises in the array are complete and rejected

if any one of them fails. To implement this within the context of

endpoint logic, each query is incorporated in an async function, and

embodied in a promise. All these query promises are populated in

an array and run through the promise.all function. This function

computes every query in the array simultaneously. If resolved, a

successful response is sent to the frontend and if rejected, an error

response is returned. Using this async functionality allows for

concurrent operations, immensely improving efficiency. [43]

For any for loop that is required, async functions are needed to

sequentially process the logic. To do this, the async.eachSeries

function is used. A callback function is included as a parameter and

called upon the completion of each iteration, to reiterate the loop

[44]. These loops are used when ending a clinic and managing

ICD10 codes. For the end clinic functionality, a nested loop is used

to iterate through all appointments of a specified clinic (outer loop)

and all upcoming clinics (inner loop). The function checks each

upcoming clinic whether there is available capacity. If so, the

current appointment in the loop will be moved to that particular

clinic and the callback function for the outer loop will be called, to

jump to the next appointment (iterate the outer loop). If there are

no available spots in the clinic, the callback for the inner loop gets

called to jump to the next clinic (iterate the inner loop). This will

happen until all appointments in the specified clinic are moved to

the next available clinic. For ICD10 codes, an array of codes is

received from the frontend and looped through using

async.eachSeries. For each iteration, an SQL query is fired to the

database, to check if the ICD10 code exists in the local database. If

so, a connection in the bridge table is made with that particular

code, otherwise a new tuple in the ICD10 codes table is created,

and a relationship is formed with the newly created code. Following

the completion of either one of these operations, the callback

function gets called to reiterate the loop. This process happens until

all codes in the list are processed in the loop.

5 TESTING METHODOLOGIES

The user testing was split into two phases. The first phase of user

testing was conducted after the foundational system was developed,

with all core functionality implemented. The second phase was

conducted after incorporating the feedback from the first phase.

The first phase involved testing six users who worked in the tech

industry and or had a background in Computer Science. It was

anticipated that this group of users would be able to provide a sound

technical analysis and feedback on the UI/UX of the system. The

second phase involved testing three users who have had prior

experience working with some sort of healthcare management

system. Finally, a test was conducted with the project proposer to

assess his feedback on the system as a whole. Each session began

with a brief explanation on the context of the organisation,

overview of the system and the purpose of the usability test. The

participants were then guided through the informed consent form

and requested to sign it before the test could commence. Each test

began with the interviewer providing the user with a series of high

level tasks. The type of tasks requested can be seen in Appendix E.

The users were asked to think aloud with respect to any thoughts

they may have when undergoing the various tasks, to help measure

the effectiveness of various aspects of the system. Each test took

place through a video call, where the interviewer shared their

screen and the user gained remote access to use the system. The

session was recorded, and the feedback was analysed to determine

the intuitiveness and effectiveness of the system.

In addition to usability testing, functional unit tests were conducted

on both the frontend and backend. JEST is a JavaScript testing

framework and was used to test the functionality of the frontend

and the backend applications, as they are both coded in JavaScript.

With respect to the testing on the frontend, unit tests were written

for all actions fired to the API. The tests analysed the effect on the

central storage of the application (Redux), to determine if the

changes were aligned with what was expected. Similarly, unit tests

were written on the backend, to test all significant CRUD endpoints

in the API and database. For each unit test, the endpoint was called

and the response from the database was compared to the expected

response provided in the unit test definition. A test database was

used when running the tests, as changes were reflected in the

database [47]. The functional tests were conducted throughout the

development on the application, to ensure functional effectiveness.

After each feature was implemented, a test would be conducted to

make sure it is effective.

6 RESULTS, FINDINGS AND DISCUCSSION

In this section, the results of the testing are analysed and discussed.

The user tests assessed the usability, intuitiveness and functionality

of the system, whilst the functional tests assessed only the

functionality of the system. As mentioned previously, the usability

tests were segmented into two phases, and will be discussed

separately.

6.1 Phase 1 Usability Tests

6.1.1 Login Screen

All the users were able to easily login to the application. Two users

identified that there was no feedback when incorrect credentials

were entered. Another two users suggested the option to be able to

view the password that they entered.

To address these concerns, an error message was displayed,

informing the user when they enter in incorrect credentials.

Additionally, a clickable eye icon was included allowing the user

to make their password visible.

6.1.2 Dashboard

All the users were able to effectively navigate through the actions

available in the dashboard. One user suggested it would be ideal if

the patient details could be edited on the patient profile screen.

Another user suggested that the names in patient pool should be

ordered alphabetically. The overall consensus was that the

dashboard was intuitive and that it centralised certain actions,

increasing its accessibility. The users enjoyed the option to jump to

the current location of the patient’s visit.

To address the aforementioned issues, the patient details were made

editable on the patient profile and the tables were ordered

alphabetically by surname.

6.1.3 Sedation Appointments

All the users were able to effectively and easily create an

appointment, check-in a patient and start a visit. One user created

two appointments for the same patient on the same clinic, which

shouldn’t be allowed. Two users were unsure that the clinics

displayed on the side were supposed to be selected. One user had

accidently started a visit and couldn’t recover from this error.

To address these issues, it was implemented so that adding two

appointments for the same patient on the same clinic will return an

error message, and the appointment won’t be added. Additionally,

the UI of the clinic cards were changed to make it appear clickable.

Finally, an option was made available in the dashboard to cancel

the visit and move it back to appointments.

6.1.4 Sedation Waiting Lists

All users were able to transfer the patients to the next phase and

navigate to the information capture screen.

6.1.5 Information Capture

All users were able to efficiently capture the information for each

respective phase. The users seemed to enjoy the interface and

thought it was simple and easy to use. Certain users also enjoyed

how it initially directed them to the relevant information tab (based

on the phase), along with the option to switch between other tabs.

An issue came about during two tests where the form information

was loading the wrong data. Additionally, one user was unsure

when an ICD10 was added, as it reflected behind the modal.

To rectify the information display issue, it was implemented so a

spinner gets displayed whilst loading the data. Once complete, the

component is displayed with the latest information loaded. For the

ICD10 code issue, it was implemented so a tick gets displayed on

the respective row when added.

6.1.6 General Practice Appointments

All users were able to add/edit appointments and then start the visit

with ease. The users really enjoyed the calendar interface and the

way in which the appointments can be added and moved around on

the calendar. One user started a visit on a future date, which

shouldn’t be allowed. Another user suggested it might be nice to

differentiate the appointments started from those that haven’t,

displayed on the calendar.

To address these issues, it was implemented such that the start visit

button only gets displayed for appointments on the current date.

Additionally, the appointments were changed to be colour coded on

the calendar, where appointments are blue initially and get changed

to green once the visit is started.

6.1.7 Admin Panel

All users managed to effectively add/edit and remove data as

required.

6.1.8 General

A few users were unsure of whether their actions had been

successfully completed or not. Additionally, users reported that

there were missing confirmation dialogs in the system, which could

result in unintentional actions being fired.

To address these issues, feedback was implemented for each action.

Upon success of an action, a modal will appear on the bottom right

of the screen to indicate the success. If an error had to occur, it will

be displayed, informing the user. Additionally, confirmation

modals were incorporated for every important action in the system.

6.2 Phase 2 Usability Tests

After incorporating all the above changes in the system, phase two

user tests commenced. The three users that were tested in this phase

managed to complete all the tasks given to them with ease. Despite

the generality of the tasks, each user managed to autonomously

navigate through the system and complete each and every task

successfully. Following these user tests, a final demo was

conducted with the project proposer to evaluate the system as a

whole. The feedback from the demo was highly positive and the

proposer confirmed that all the requirements were successfully met.

He was very impressed with the system and showed a sense of

eagerness to deploy it into production.

6.3 Functional Tests

After each feature was developed, the relevant tests were analysed.

If a test had to fail, necessary changes were made in the code until

the test became successful. This testing methodology allowed the

team to ensure that all features were working effectively, before

moving on to implement new features in the backlog. At the end of

development, all tests suites for both the frontend and the backend

were successful, meaning that the results of the test matched what

was expected. The frontend test results can be seen in Appendix F

and the backend test results can be seen in Appendix G.

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The agile methodology used to manage the project development

was successful with respect to aligning requirements and meeting

project deadlines. The iterative approach and constant feedback

allowed for change and clarification of requirements. The team was

cohesive and worked very well together. Furthermore, the scrum

framework along with the project management tools helped to

manage collaboration and track progress.

The first phase of user tests surfaced some important UI/UX and

functionality issues. It proved to be beneficial testing users with a

Computer Science background, as they provided highly useful

feedback. This was the ultimate reason for conducting phase one

tests. After incorporating the feedback into the system, the second

phase produced highly successful results. All users were able to

successfully complete all tasks without any issues, concluding that

the system is sufficiently usable. Additionally, all the unit tests

conducted were successful, concluding that the entire system is

functionally effective. Finally, the project proposer was happy with

the system and confirmed that it met all requirements, concluding

that the system was accepted by the client.

Conducting research into technologies and associated best practices

proved to be highly beneficial in the development of the system.

The is evident based off the efficient and effective end system that

was provably developed. Furthermore, developing the system from

scratch appeared to be the best approach in tailoring the system in

line with the specific requirements provided. This is evident based

off the client’s feedback, and the fact that all requirements were

successfully met. Additionally, it provided the team with great

exposure and proved to be an immense learning experience.

The team was unable to test the system in production because the

clinics were not running as a result of the Covid-19 pandemic.

Justified predictions on how the system will achieve its aims in

production therefore have to be made to prove the systems success.

These predictions are based off the testing results. The system

proved to be sufficiently usable in a fast paced environment and

will thus lead to increased efficiency. Additionally, the system met

all functional and non-functional requirements, and will thus be

effective in streamlining operations and increasing quality of

records. Finally, the system was designed so that all data is

centralised, allowing for increased access to records as well as

analysis. This being said, if the system had to be deployed, it is

predicted to achieve all the aims specified in the introduction,

deeming the project an overall success.

7.2 Future Work

The system was designed with the consideration for maintenance

and future expansion. The next step for the project is to meet with

the VMS board to discuss maintenance and evolution of the system.

For further improvement, a general dashboard can be implemented

to visualise a range of statistics for the respective clinic. This will

allow the staff to track progress of the clinic and make decisions

based off an overall analysis. Furthermore, integrated reporting can

be implemented to generate graphical representations of all data

stored in the database. This will allow VMS to derive insights into

the current state of operations and use these insights to derive

solutions that ultimately optimise performance.

8 REFLECTION AND RECOMMENDATIONS

The process of developing this application was a tough but

rewarding experience. After the initial requirements specification

meeting, the team was left feeling overwhelmed with the

extensiveness of the requirements. Once we began to coherently

conceptualise everything and design the system, we gained a much

better understanding of the system and what is expected. It is highly

recommended to make use of design tools to detail information

about the system, as it significantly speeds up the implementation

process and results in greater alignment of requirements. For an

extensive system such as this, it is imperative to utilise best

practices. This involved many hours of research and discussion.

The team leveraged off connections in the software development

industry to get advice on important aspects of the system. This

proved to be highly beneficial and is recommended to anyone who

wishes to replicate this work. The core functionality of the

implementation proved to be the biggest challenge of the process,

as it involved tapping into new territories. The team made use of

popular tech stack for this reason. The abundance of community

support significantly aided in conquering these challenges. Once

the foundational system was developed, implementation

progressed quickly and effectively. Using project management

tools to outline tasks and track progress proved to have a significant

effect on the efficiency of development. Another major challenge

was the fact that the project proposer was extremely busy with the

Covid response and was not often available to clarify certain

requirements. This hindered the progress of the development as we

often had to wait for his response before continuing. It is

recommended to try and clarify all requirements early on, in the

event of something unpredictable as such.

9 ACKNOWLEDGEMENTS

I would like to acknowledge my team members, Zachary Bresler

and Chad Piha for their dedicated commitment and valuable

contributions to this project. I would also like to thank our project

supervisor, Aslam Safla and second reader, Melissa Densmore for

their support and guidance during the project. Additionally, I would

like to acknowledge Dr Moosa, who proposed the project and took

the time to provide us with all requirements of the system. Finally,

a thank you goes out to all the participants take partook in the user

evaluations.

REFERENCES

[1] Vision Medical Suite. 2016. About us. Retrieved June 2, 2020 from

http://www.visionmedicalsuite.co.za/about-us/

[2] Workpool. 2016. What is POPI? The Protection of Personal Information (POPI)

Act explained. Retrieved May 29, 2020 from https://www.workpool.co/featured/popi

[3] Health Professions Council of South Africa. 2016. Confidentiality: Protecting and

Providing Information. ACM 16, 1-5

[4] Al-Fedaghi, Sabah. 2011. Developing Web Applications. International Journal of

Software Engineering and Its Applications. Article 5. 57-59. DOI:

https://doi.org/10.1007/978-1-4302-3531-6_12.

[5] Emily. 2017. Web-Based Applications Offers Far Superior Advantages Over

Desktop Ones. (August 2017). Retrieved April 20, 2020 from

https://techpatio.com/2017/articles/webbased-applications-offer

superioradvantagesdesktop

[6] Paweł Skólski. 2016. Single-page application vs. multiple-page application.

(December 2016). Retrieved April 20, 2020 from

https://medium.com/@NeotericEU/single-page-application-vs-multiple

pageapplication-2591588efe58

[7] Leslie Bloom. 2019. Benefits of Using a Database. (June 2019). Retrieved April

22, 2020 from https://bizfluent.com/facts-4924693-benefits-using-database.html

[8] Sonam Khedar and Swapnil Thube. 2017. Real Time Databases for Applications.

Vol. 4. International Research Journal of Engineering and Technology (IRJET)

Conference Name: ACM Woodstock conferenceConference Short Name:

WOODSTOCK’18Conference Location: El Paso, Texas USAISBN:978-1-4503-

0000-0/18/06Year:2018Date:JuneCopyright Year:2018

[9] James Michael Stewart. 2011. CompTIA Security+™: Review Guide, Second

Edition (2nd. ed.). Sybex.

[10] Raju Raghuwanshi. 2017. JWT (JSON Web Tokens) Are Better Than Session

Cookies . (April 2017). Retrieved April 26, 2020 from

https://dzone.com/articles/jwtjson-web-tokens-are-better-than-session-cookies

[11] Auth0: Introduction to JSON Web Tokens. Retrieved from

https://jwt.io/introduction/

[12] Brian Childress. 2018. Securing Applications with Better User Authorisation

(November 2018). Retrieved April 27, 2020 from https://medium.com/capital-one-

tech/securing-applications-with-better-user-authorization-625ec07a7001

[13] OpenMRS. 2020. OpenMRS. Retrieved July 11, 2020 from

https://github.com/openmrs

[14] Stackify. 2017. SOAP vs REST. (August 2017). Retrieved September 15, 2020

from https://stackify.com/soap-vs-

rest/#:~:text=In%20addition%20to%20using%20HTTP,considered%20easier%20to

%20work%20with.

[15] EssayCorp. 2017. ER Diagrams and its Benefits. (October 2015). Retrieved

September 16, 2020 from https://blog.essaycorp.com/er-diagrams-and-its-benefits/

[16] Nick Mertens. n.d. RDBMS Basics: SQL Database Fundamentals. Retrieved

September 16, 2020 from

https://www.goskills.com/Development/Resources/RDBMS-basics

[17] Rubel Rana. n.d. Hospital Management System. Thesis. Uttara University

Uttara, Dhaka.

[18] Microsoft Ignite. 2020. Description of database normalisation basics.

(September 2020). Retrieved September 16, 2020 from

https://docs.microsoft.com/en-us/office/troubleshoot/access/database-normalization-

description

[19] Ahmet Ozlu. 2018. Mastering REST Architecture. (July 2018). Retrieved

September 17, 2020 from https://medium.com/@ahmetozlu93/mastering-rest-

architecture-rest-architecture-details-e47ec659f6bc

[20] Thiago Pacheco. 2019. Designing a better architecture for a Node.js API.

(November 2019). Retrieved September 17, 2020 from

https://dev.to/pacheco/designing-a-better-architecture-for-a-node-js-api-24d

[21] Piero Borrelli 2019. The perfect architecture flow for your next Node.js project.

(October 2019). Retrieved September 17, 2020 from https://blog.logrocket.com/the-

perfect-architecture-flow-for-your-next-node-js-project/

[22] Janishar Ali 2020. Design Node.js Backend Architecture like a pro. (April

2020). Retrieved September 17, 2020 from https://afteracademy.com/blog/design-

node-js-backend-architecture-like-a-pro

[23] Ataubu Prince 2018. Design Node.js Backend Architecture like a pro. (June

2018). Retrieved September 17, 2020 from https://dev.to/achowba/build-a-simple-

app-using-noe-js-and-mysql-19me

[24] Code for Geek 2015. RESTful API using Node Express and MySQL (May

2015). Retrieved September 17, 2020 from https://codeforgeek.com/restful-api-node-

and-express-4/

[25] Bezkoder 2020. Build Node.js REST APIs with Express and MySQL

(September 2020). Retrieved September 17, 2020 from https://bezkoder.com/node-js-

rest-api-express-mysql/

[26] Tony Branson 2017. The 5 Best Reasons to Choose MySQL (April 2017).

Retrieved September 18, 2020 from https://dataconomy.com/2017/04/5-reasons-

challenges-mysql/

[27] Simform n.d. Why and Where Should you Use React for Web Development.

Retrieved September 18, 2020 from https://www.simform.com/why-use-react/

[28] Justyna Rachowicz. 2017. When, How and Why use Node.js as your Backend.

Retrieved September 18, 2020 from https://www.netguru.com/blog/node-js-backend-

use-react/

[29] Jodi Lebow. N.d. What is Scrum Methodology. Retrieved September 19, 2020

from https://digital.ai/resources/agile-101/what-is-

scrum#:~:text=Scrum%20is%20an%20agile%20project,capability%20every%202%

2D4%20weeks

[30] Node. 2011. What is NPM?. (August 2011). Retrieved September 20, 2020

from https://nodejs.org/en/knowledge/getting-started/npm/what-is-npm/

[31] Express. N.d. CORS. Retrieved September 20, 2020 from

https://expressjs.com/en/resources/middleware/cors.html

[32] Express. N.d. Morgan. Retrieved September 20, 2020 from

http://expressjs.com/en/resources/middleware/morgan.html

[33] Express. N.d. Writing Middleware for Use in Express Apps. Retrieved

September 20, 2020 from https://expressjs.com/en/guide/writing-middleware.html

[34] Baeldung. 2020. A Simple Guide to Connection Pooling in Java. (May 2020).

Retrieved September 21, 2020 from https://www.baeldung.com/java-connection-

pooling

[35] MySQL Tutorial. 2020. Connecting to the MySQL Database Server from

Node.js. Retrieved September 21, 2020 from https://www.mysqltutorial.org/mysql-

nodejs/connect/

[36] Janith Kasun. 2020. Authentication and Authorisation with JWTs in Express.js.

Retrieved September 21, 2020 from https://stackabuse.com/authentication-and-

authorization-with-jwts-in-express-js/

[37] M Fikri Setiadi. 2018. 7 Steps to Create Simple CRUD application using

Node.js, Express and MySQL (November 2018). Retrieved September 22, 2020 from

http://mfikri.com/en/blog/nodejs-mysql-crud

[38] W3 Schools. SQL JOINS. Retrieved September 22, 2020 from

https://www.w3schools.com/sql/sql_join.asp

[39] Zulaikha Geer. 2019. How to Build a CRUD Application using Node.js and

MySQL. (May 2019). Retrieved September 23, 2020 from

https://medium.com/edureka/node-js-mysql-tutorial-cef7452f2762

[40] NPM. 2020. JOI. (August 2020) Retrieved September 23, 2020 from

https://www.npmjs.com/package/joi

[41] Code for Geek. 2016. Asynchronous Programming in Node.js. (April 2016)

Retrieved September 23, 2020 from https://codeforgeek.com/asynchronous-

programming-in-node

js/#:~:text=JavaScript%20is%20asynchronous%20in%20nature,the%20non%2Dbloc

king%20code%20execution.&text=In%20general%20if%20we%20execute,the%20o

ne%20you%20are%20executing.

https://doi.org/10.1007/978-1-4302-3531-6_12
https://techpatio.com/2017/articles/webbased-applications-offer%20superioradvantagesdesktop
https://techpatio.com/2017/articles/webbased-applications-offer%20superioradvantagesdesktop
https://medium.com/@NeotericEU/single-page-application-vs-multiplepageapplication-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiplepageapplication-2591588efe58
https://bizfluent.com/facts-4924693-benefits-using-database.html
https://dzone.com/articles/jwtjson-web-tokens-are-better-than-session-cookies
https://jwt.io/introduction/
https://medium.com/capital-one-tech/securing-applications-with-better-user-authorization-625ec07a7001
https://medium.com/capital-one-tech/securing-applications-with-better-user-authorization-625ec07a7001
https://stackify.com/soap-vs-rest/#:~:text=In%20addition%20to%20using%20HTTP,considered%20easier%20to%20work%20with.�
https://stackify.com/soap-vs-rest/#:~:text=In%20addition%20to%20using%20HTTP,considered%20easier%20to%20work%20with.�
https://stackify.com/soap-vs-rest/#:~:text=In%20addition%20to%20using%20HTTP,considered%20easier%20to%20work%20with.�
https://stackify.com/soap-vs-rest/#:~:text=In%20addition%20to%20using%20HTTP,considered%20easier%20to%20work%20with.�
https://techpatio.com/2017/articles/webbased-applications-offer%20superioradvantagesdesktop
https://techpatio.com/2017/articles/webbased-applications-offer%20superioradvantagesdesktop
https://www.goskills.com/Development/Resources/RDBMS-basics
https://medium.com/@ahmetozlu93/mastering-rest-architecture-rest-architecture-details-e47ec659f6bc
https://medium.com/@ahmetozlu93/mastering-rest-architecture-rest-architecture-details-e47ec659f6bc
https://dev.to/pacheco/designing-a-better-architecture-for-a-node-js-api-24d
https://dev.to/achowba/build-a-simple-app-using-noe-js-and-mysql-19me
https://dev.to/achowba/build-a-simple-app-using-noe-js-and-mysql-19me
https://codeforgeek.com/restful-api-node-and-express-4/
https://codeforgeek.com/restful-api-node-and-express-4/
https://bezkoder.com/node-js-rest-api-express-mysql/
https://bezkoder.com/node-js-rest-api-express-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://www.simform.com/why-use-react/
https://digital.ai/resources/agile-101/what-is-scrum#:~:text=Scrum%20is%20an%20agile%20project,capability%20every%202%2D4%20weeks
https://digital.ai/resources/agile-101/what-is-scrum#:~:text=Scrum%20is%20an%20agile%20project,capability%20every%202%2D4%20weeks
https://digital.ai/resources/agile-101/what-is-scrum#:~:text=Scrum%20is%20an%20agile%20project,capability%20every%202%2D4%20weeks
https://nodejs.org/en/knowledge/getting-started/npm/what-is-npm/
https://expressjs.com/en/resources/middleware/cors.html
http://expressjs.com/en/resources/middleware/morgan.html
https://expressjs.com/en/guide/writing-middleware.html
https://www.baeldung.com/java-connection-pooling
https://www.baeldung.com/java-connection-pooling
https://stackabuse.com/authentication-and-authorization-with-jwts-in-express-js/
https://stackabuse.com/authentication-and-authorization-with-jwts-in-express-js/
http://mfikri.com/en/blog/nodejs-mysql-crud
https://codeforgeek.com/asynchronous-programming-in-node
https://codeforgeek.com/asynchronous-programming-in-node

[42] JavaScript Info. 2020. Async Await. (August 2020) Retrieved September 24,

2020 from https://javascript.info/async-await

[43] Srebalaji Thirumalai. 2019. All you need to know about Promose.all. (April

2019) Retrieved September 24, 2020 from

https://www.freecodecamp.org/news/promise-all-in-javascript-with-example-

6c8c5aea3e32/

[44] NPM. 2015. Async-Each-Series. (September 2015) Retrieved September 24,

2020 from https://www.npmjs.com/package/async-each-series

[45] Jan L. Harrington. 2009. Client-Server Architecture. Relational Database

Design. Third Edition.. Science Direct.

[46] IBM. N.d. REST API response codes and error messages. Retrieved September

25, 2020 from

https://www.ibm.com/support/knowledgecenter/SSQP76_8.8.1/com.ibm.odm.dserve

r.events.ref/topics/ref_dse_restapi_responsecodes_errormsgs.html

[47] JEST. N.d. JEST. Retrieved September 29, 2020 from https://jestjs.io/

[48] Course Hero. N.d. Chapter 4 -Requirements – CS 360. Retrieved October 01,

2020 from https://www.coursehero.com/file/38302656/ch4requirements-pptx/

[49] Shanuj Mishra. 2019. The Importance Of Prototyping In Designing. Retrieved

October 02, 2020 from https://uxdesign.cc/importance-of-prototyping-in-designing-

7287c7035a0d#:~:text=Following%20are%20the%20fundamental%20reasons,focusi

ng%20on%20important%20interface%20elements.

[50] Guru 99. N.d. Database Design Tutorial. Retrieved October 02, 2020 from

https://www.guru99.com/database-

design.html#:~:text=Database%20Design%20is%20a%20collection,of%20enterprise

%20data%20management%20systems.&text=The%20main%20objectives%20of%2

0database,of%20the%20proposed%20database%20system.

https://www.freecodecamp.org/news/promise-all-in-javascript-with-example-6c8c5aea3e32/
https://www.freecodecamp.org/news/promise-all-in-javascript-with-example-6c8c5aea3e32/
https://www.ibm.com/support/knowledgecenter/SSQP76_8.8.1/com.ibm.odm.dserver.events.ref/topics/ref_dse_restapi_responsecodes_errormsgs.html
https://www.ibm.com/support/knowledgecenter/SSQP76_8.8.1/com.ibm.odm.dserver.events.ref/topics/ref_dse_restapi_responsecodes_errormsgs.html
https://jestjs.io/

SUPPLEMENTARY INFORMATION
APPENDIX A:
USE CASE DIAGRAM

APPENDIX B:
FRONTEND COMPONENT TREE

APPENDIX C:
BACKEND COMPONENT TREE

APPENDIX D:
ENTITY RELATIONSHIP DIAGRAM

APPENDIX E:
USER EVALUATION TASKS

1. Log in to admin panel

2. Register staff member

3. Add dynamic data for everything

4. Add a clinic for today

5. Link patients to yourself

6. Navigate to your email, and change your password

7. Register a patient

8. Create an appointment with recently registered patient

9. If you wanted to increase the capacity of the clinic, what would you do?

10. This new patient walks in for his appointment. Please check him in.

11. The staff is now for him. Begin his visit.

12. Locate the location of the visit

13. Fill in the appropriate information for current phase

14. Once done, transfer the patient to the next phase

15. Repeat until the patient until the patient is ready to be exited

16. When ready, exit the patient from the visit

17. View patient profile

18. Edit info from the visit just ended

19. Redirect to general practice

20. Create an appointment for today

21. Start the visit for that patient

22. Edit all info for that visit

23. Logout

APPENDIX F:

FRONTEND UNIT TEST RESULTS

APPENDIX G:
BACKEND UNIT TEST RESULTS

APPENDIX H:
INTERFACE DESIGN

Sedation Clinic:

Figure 1: Application login screen Figure 2: Dashboard

Figure 3: Creating clinic appointment Figure 4: Sedation clinic appointments

Figure 5: Editing, Checking-in and delete appointment function Figure 6: Edit sedation clinic capacity

Figure 7: Sedation clinic ongoing visits Figure 8: Patient actions

Figure 9: Waiting for triage table with patient actions Figure 10: Additional screening form (with validation)

Figure 11: Moving patient between phases feedback modal Figure 12: Completing sedation clinic visit

Figure 13: Patient Profile Figure 14: Register Patient

Figure 15: Add ICD10 code modal

General Practice (GP):

Figure 16: GP Dashboard Figure 17: GP appointments

Figure 18: Create GP appointment (with patient list dropdown) Figure 19: Appointment actions

Figure 20: Patients undergoing their appointment Figure 21: GP Treatment Information Capture (w/ Voice to text)

Figure 22: GP patient profile

Admin Panel

Figure 23: List of all patients Figure 24: Editing patient details

Figure 25: Confirmation modal Figure 26: Register staff

Figure 27: List of all staff members Figure 28: Dynamic data

Figure 29: Adding beneficiaries dynamic data Figure 30: Create sedation clinic (with validation)

Figure 31: Past sedation clinics Figure 32: Patient-staff link

Mobile application sedation clinic

Figure 33: List of all patients table Figure 34: Book appointment (w/ validation) Figure 35: Appointments actions

Figure 36: Appointments Figure 37: Feedback modal Figure 38: Mobile form

Figure 39: Exit to modal Figure 40: Expanded hamburger menu

Mobile General Practice:

Figure 41: Linked patients table Figure 42: Appointments Figure 43: Book appointment. Figure 44: Patient profile

Figure 45: Patient profile (cont.) Figure 46: GP form

