

CS/IT Honours

Final Paper 2020

Title: Software Implementation of a Healthcare Management System

Author: Zachary Bresler (BRSZAC002)

Project Abbreviation: Vision

Supervisor: Aslam Safla

Category Min Max Chosen

Requirement Analysis and Design 0 20 20

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 20 20

Results, Findings and Conclusions 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Software Implementation of a Healthcare Management System Z. Bresler

Software Implementation of a Healthcare Management System

Zachary Bresler
 Computer Science Department

 University of Cape Town

 Cape Town, South Africa
 BRSZAC002@myuct.ac.za

ABSTRACT

Vision Medical Suite is a Non-Profit Company that helps provide

healthcare to vulnerable South Africans. The company currently

uses manual systems to help manage their staff and patients which

is inefficient and detrimental to their mission of providing the best

quality healthcare possible.

This paper presents a solution in the form of a web application

which is accessible via desktop and mobile devices. The system

provides an advanced tool to its users which enables them to

easily manage staff, patients and related clinic and general

practice information. All information and data are stored and

tracked for ease of access and for analysis. Healthcare

professionals are able to clearly manage patients from beginning

to end of their journey and are able to keep track of patients’

history and future interactions. This paper describes the system in

depth to provide a clear understanding of the software solution for

healthcare professionals in clinics and general practices.

The web application is able to help Vision Medical Suite manage

their operations as well as enable healthcare professionals to

manage patients feeding into the clinic and managing patients

transferred after the clinic.

CCS CONCEPTS

• Software and its engineering → Software organization and

properties • Information systems → Information systems

applications

KEYWORDS

React.js; Management systems; Healthcare; Web Application;

Agile Development; State; Components, Actions and Reducers

1 INTRODUCTION AND BACKGROUND

1.1 Background

The project was proposed by Vision Medical Suite (VMS) which

is a Non-Profit Company (NPC) that helps provide healthcare to

vulnerable South Africans. The company provides free medical,

dental, and other health services to its affiliated beneficiaries –

there being around forty beneficiaries at the time of writing this

paper. [44] Their biggest contribution is running a free once a

month clinic where the company provides its services to the

beneficiaries. At the once a month clinic they also allow walk-ins

to vulnerable people in need of healthcare services. In order to

manage the system, they follow a pipeline which manages patients

through five phases (Waiting for Triage; Waiting for Theatre; In

Theatre; Waiting for Disposition; and Waiting for Exit) each with

its own medical form.

Medical clinicians volunteer their time to VMS to ensure that the

clinics can in fact continue their operations. The volunteers that

have private practices will sometimes refer patients back to their

practice for check-ups or additional healthcare, after the clinic has

ended.

1.2 Problem

VMS currently uses manual systems (pen, and paper) to help

manage their staff (volunteers) and patients. They capture all

relevant information using a paper-based system which is

inefficient and detrimental to their mission of providing the best

quality healthcare to vulnerable South Africans. Hence, it makes it

difficult for VMS to operate as it is still using an antiquated

system of information capturing and management. When using a

paper-based system it is easy for information and documents to

get lost; the overhead that comes with dealing with large amounts

of paperwork reduces the ability to provide the best quality

healthcare to its patients; staff are having to manually capture

important information about their patients which is error-prone

and inefficient; storing the files becomes a problem in terms of

storage and security; and it becomes difficult to share and transfer

patient information with different doctors for referrals and check-

ups.

1.3 Aim formulation

Due to the problems facing VMS there is a need for a solution to

help streamline its operations as well as something that can

provide it with ease of use, easy access to information and having

the ability to store and manage sensitive information securely.

This paper presents a solution to its problems in the form of a web

application. The aim was to create a fully functional, custom full

stack application that would ultimately improve the operations of

VMS by enabling it to easily manage patients and staff as well as

manage its respective information. The interface needs to be

simple, clean, and easy to use. The software needs to be fast,

secure and maintainable. Furthermore, it needs to meet the

stipulated requirements set out during the requirements analysis

phase.

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

This paper is relevant to Computer Science in terms of the

software development processes and practices that were followed.

Additionally, the architecture and formulation of the software is

relevant to Computer Science.

1.4 Application Characteristics

The main characteristics of the application encompass features

that are essential to the management of a healthcare clinic.

Features include, appointment management; tracking of patients

through the respective phases; information capturing for

respective phases; a user interface (UI) that is easy to use; admin

functionalities; and enabling a user to access their own practice in

addition to the sedation clinic.

1.5 Ethical, Professional and Legal Issues

1.5.1 Legal Issues. This paper and the web application

developed, deals with sensitive personal information, hence it is

important that the Protection of Personal Information Act 4 of

2013 [1] is abided by to ensure protection of staff and especially

patients’ information.

Node.js, React, Express, MySQL, and Adobe XD are free to

use in commercial use and hence there are no legal issues with

using the software for development of the application. [2,3,4,5,6]

1.5.2 Ethical Issues. Due to COVID-19 is was essential that

the testing conducted was not done in person as we wanted to

reduce the spread of the virus and reduce the possibility of

infections.

1.5.3 Professional Issues. The software does not form

ownership of the group but rather will fall ownership to Vision

Medical Suite (VMS) and UCT.

1.6 Structure of Report

This paper will describe related work with a focus on comparisons

to similar systems and comparisons of software available for use.

An analysis of the requirements gathered for the system is

provided and included in this a detailed description of the design

processes and design thinking. The approach and implementation

make up the bulk of the paper and will clearly outline and explain

the approach that was taken in the development of the system and

how the core features were implemented. There will be a focus on

state management with the use of Redux and how the system

followed key principles of React. The system deals with sensitive

information, hence the security implementation is discussed.

The different testing methods will be provided, including the

explanation of why testing was conducted. Following this, the

results and discussion will outline the results of the testing,

evaluating the system, and determining the success of the tests.

An additional reflection on the development of the system will be

provided – allowing a clear understanding of what processes

worked and which did not. Finally, conclusions will be made from

the results and whether the system is successful in achieving the

aims set out. A brief discussion of future work of this project will

be provided while giving some additional features that could

improve the system for deployment.

2 RELATED WORK

2.1 Similar Systems

2.1.1 Open Source Software. OpenMRS is an open source

medical record system which allows for easy access of

information as well as storage of patient and staff details [7]. Due

to it being open source it is possible to make changed to the

system. The software has to cater to many different people and

thus has to encompass a large range of features. Therefore, the

code base is rather bloated with unrequired features. [7]

Another system identified is HospitalRun, which is an open

source software focusing on providing a tool to hospitals in

developing areas which do not have the resources to develop or

purchase a management system. Its biggest advantage is being

able to run offline, which is essential in developing countries with

intermittent internet connection and limited electricity. [8]

The reason for not using open source software is because it would

mean having to learn the existing software thoroughly and having

to compromise on certain sections of the software. A significant

issue with these systems is that they do not provide a pipeline for

a clinic – such as being able to move patients through different

phases and enabling clinicians to manage the patients in each

phase. [7, 8]

2.1.2 Paid Software. TeamDesk is a paid system that helps

manage stored information for hospitals. It is a customizable web

application that enables users to manage different tables of their

database. A disadvantage to this software is that there is no mobile

version, thus while clinicians are working, they cannot update

information on the go. This software also does not have a pipeline

to manage patients through a clinic. Additionally, the software has

too many features for a small company such as VMS. [9]

Furthermore, VMS would need to purchase the software when

they could be spending money on resources and materials for the

clinic.

As a group we decided that creating the web application from

scratch would not only benefit VMS but would also benefit the

group. VMS will be receiving a fully custom web application

catered to their specifications, additionally, as students we are

able to gain experience in developing a full stack application for

an NPC that will hopefully be used to benefit the lives of

vulnerable South Africans.

2.2 Technologies and Software

A web application was intended to be developed and hence on the

frontend a comparison of the different frameworks is provided.

The three main JavaScript frameworks are React.js, Angular, and

Vue.js.

Software Implementation of a Healthcare Management System Z. Bresler

Figure 1: Table comparing the top three JavaScript front-end

frameworks.

React was the best choice for this development project as it has a

small learning curve, is powerful and has a large community. The

team has experience in developing web applications using

React.js and hence we could produce high quality results faster.

3 REQUIREMENTS ANALYSIS AND DESIGN

3.1 Requirements Analysis

To clearly determine the scope of the project it was essential to

conduct meetings with the project proposer to outline the software

requirements of the system. The purpose of the initial meeting

with the project proposer was to discuss the overall project and to

get a better understanding of what was required of the system. He

first gave context to the system in terms how VMS operates and

the type of work that they do. This gave the team a better

understanding of the environment that the software would be used

in and it would help in identifying some key non-functional

requirements. The proposer continued by conducting a

walkthrough of a much larger system (used for Emergency

Centres around South Africa) as an example of what VMS would

need. He explained how the system works from a high-level view.

While going through the system, he highlighted the features that

would be necessary for VMS. The meeting was recorded and

enabled the team to analyse the system more closely. The team

then collaborated to identify the functional and non-functional

requirements that would define the VMS system.

The functional requirements included information about what the

system should be able to do. In respect to the sedation clinic, it is

essential to be able to manage patients through the different

phases (which include Waiting for Triage; Waiting for Theatre; In

Theatre; Waiting for Disposition; and Waiting for Exit). Hence

being able to register the patient and then having the ability to

move the patient through the different phases and capturing the

respective information for those phases. Users should be able to

add appointments for the scheduled sedation clinics for patients

who are registered on the system. In addition to the sedation

clinic, volunteering staff need to manage their patients coming to

and from the sedation clinic. The proposer referred to this as the

general practice. In this part of the system, it would be necessary

for users to add appointments and fill in relevant information

about the patient’s visit. Furthermore, VMS requires the ability to

make changes and have a high-level control of the system. This

includes information that will be used in the system (beneficiaries,

locations, hospitals etc.). The admin user should be able to

manage the staff and patients, in terms of deleting, editing,

registering and linking patients to respective doctors (for their

practice and to access patient information).

The non-functional requirements included information about who

the users are (referred to throughout the paper) – doctors, nurses,

dentists, dental assistants, anaesthetists, secretaries, and other

allied service professionals; the devices the software needed to be

compatible with – which included all android and iOS devices; the

type of environment where the software is required to function

includes areas with internet access and that are fast-paced, hence

the software must be user friendly and actions should be clear in

the interface. In addition to these requirements, the security and

performance of the application is of the utmost importance as the

system deals with patients’ sensitive information and the staff’s

time cannot be wasted on a slow ineffective system.

To ensure the best outcome of the project, the team needed to

validate and verify the identified requirements. In order to do this,

a detailed list of the software requirements was sent to both the

supervisor and project proposer to analyse and ensure that we had

captured the correct needs of the system. The requirements

allowed for a detailed view of the system but ensuring changes

could be made if necessary, for VMS.

A member of the team developed a prototype following an

evolutionary methodology [10]. The software requirements were

used to develop a prototype which was presented to the project

proposer for feedback. Subsequent prototypes were developed to

adapt to the feedback received from the proposer. These

prototypes included additional features and software

improvements. In addition to validating the software

requirements, the feedback gathered at each iteration of the

prototype further clarified that we were developing a system that

fitted the requirements of VMS. [10]

To provide a clear overview of the functionality of the system a

use case diagram was created (refer to Appendix A). The use case

helped identify the requirements of the system and provide some

clarity on the actions performed by users of the system. [11]

3.2 Overview of System Architecture Design

To effectively convey the importance of this paper, it is

imperative to give a brief overview of the overall system design.

 React.js Angular Vue.js

Performance High
performance due

to virtual DOM.

[28, 30]

High performance
but is bloated

which can hinder

performance. [31]

High
performance

due to it being

so lightweight.

It also uses a

virtual DOM.
[30, 32]

Learning

Curve

Low. Not as easy

as Vue.js but

easier than

Angular. [28]

High [28, 30] Low [29]

Size Medium, around

40KB. [31]

Large, around

140KB. [31]

Small, around

20KB. [31]

Community Large

community as it

is a very popular

framework. [15]

Large community

as it is the most

mature

framework. [31]

Due to less

people using it,

there are less

resources

available. [30]

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

The system followed a layered architecture which was segmented

into the presentation layer, business logic layer and the data layer

[46]. The data layer contains the database which was designed

using a relational model to ensure the complex relationships of the

data are handled [12]. The business logic layer includes the

Application Programming Interface (API) which was designed to

follow a REST (REpresentational State Transfer) architecture.

This ensured that the API followed a set of principles laid out in

its architecture, enabling the creation of a uniform interface for

the frontend to access. [13] The frontend can then make calls to

the different endpoints defined in the API to retrieve, update,

delete or create data in the database [14] (REST and CRUD have

been explained in detail in a team member’s paper). The

presentation layer contains the frontend and is designed so the

information that is retrieved from the database will be stored in a

global storage of information. The storage is accessible from all

parts of the frontend making it easy to retrieve, update, delete or

create data in storage. The information from storage will then be

displayed in a clean user-friendly interface. The UI (user

interface) of the system will need to be separated into specific

components to ensure reusable code and code maintainability. The

system uses JSON format to standardise the communication

between the different components, both on the frontend and the

backend. [33]

3.3 Software Design

As discussed in section 3.1, meetings were conducted with both

the supervisor and the project proposer. The meetings with the

supervisor occurred weekly, where progress was discussed, and

the team had an opportunity to ask questions we had from the

previous week. Due to the Covid-19 pandemic the project

proposer was busy and hence we scheduled meetings whenever

possible. The meetings were used to receive feedback on the

system while we developed it as well as providing him with

progress updates. Additionally, the meetings allowed us to ask the

project proposer questions about feature implementation

decisions.

Once the software requirements had been generated and validated,

the design of the system could take place. As discussed in section

3.1, the prototype was developed and checked by the project

proposer. A team member developed the prototype, and another

member designed the database and application server (refer to

Appendix C and D for an ERD of the database and a backend

component tree, respectively). The software design will be

discussed in this paper.

3.3.1 Web Application Design. The design of the software is

directly linked to the requirements gathered and analysed. Hence,

this ensures the product matches the required behaviour for VMS.

The discussion in section 3.1 about the functional requirements

gives a clear outline of what was required for the system and the

type of features that are essential for a successful final product.

3.3.2 Software Systems Design. Due to the complex nature of

the web application, the group decided that based on the

requirements, using a tech stack that integrated well together and

that was consistent throughout, would be beneficial. Hence, due to

the group’s experience in JavaScript, a JavaScript stack was

preferable. The frontend was built using React, and the backend

was built using Node.js and Express. Due to the structured nature

of the data that would be required in the system, MySQL was

chosen as the database.

The software design of the frontend focused on dividing the

system into its key components. React has a component-based

architecture [15] and hence designing the frontend architecture

using a component tree enables clear visualisation of the structure

of the system. In React, it is essential to follow the principle of

DRY (Don’t Repeat Yourself) [15]. Following this principle

ensures the creation of reusable components and hence reducing

the size of the code base (ultimately improving performance due

to loading reduced files). Additionally, creating reusable code

results in a reduction in development time, and it makes code

consistent throughout by enabling different parts of the system to

use the same code. [34]

In Appendix B the component tree is displayed. The figure

visualises the overall system architecture in regard to the structure

of the different components used in the frontend. The design of

the software was created to ensure that changes can be made at

different stages of development as it is crucial to ensure that

development was prepared for changes in requirements, features

or implementation decisions (agile processes described in section

4.1 Approach). The frontend components were broken up into

Containers and Components. The Containers are used like a shell

for the different Components. Although this is a single page

application (SPA) [16], the Containers act like different pages of

the application. The parent node of the component tree is the App

component as it determines which containers are displayed. The

Layout component is used to structure the Components and

Containers onto the screen. The Layout component itself is a

Container. The Main component takes in all the different

Containers and displays them on the Layout. Therefore, the Main

component changes according to the current Route (Routing

explained in section 4.2.4 Routing) of the application.

The state of the application is essential for storing information

about the current activity of the user and information about

components displayed on the screen. The design of the state of the

application is crucial to ensure easy access to the state and

ensuring that the DOM (Document Object Model) [45] does not

render too often. In order to improve performance, controlling

how the DOM updates is essential. The concept of state in React

is tightly linked to the Virtual DOM. When state is changed in the

application the render method is invoked and the virtual DOM is

compared to the real DOM and React determines if the real DOM

needs to be updated [15]. Reducing the number of re-renders of

the DOM will improve performance by reducing the number of

Software Implementation of a Healthcare Management System Z. Bresler

calls made to the API resulting in a reduction in fetching time.

Due to the complex nature of the data dealt with in the

application, a single source of truth was desired to ensure that all

main data of the system was in a central place [15].

4 SYSTEM DEVELOPMENT AND

IMPLEMENTATION

4.1 Approach

4.1.1 Methodology. The group followed an agile methodology

with a focus on scrum practices. The design of the system was

broken into smaller parts which helped focus on tasks that needed

to be completed. [17] With the use of Jira, the group was able to

manage the different tasks effectively. The sprint board was

separated into through columns, namely, To Do, In Progress, and

Done [18]. All tasks start in the To Do column and would be

moved into the In Progress column once a member had started

working on that task. Once that task was completed the member

would move the task into the DONE column. Each sprint was

approximately two weeks and was focused toward completing

significant features of the system. On the Sunday before the start

of the sprint, the group would meet to map out all tasks to be

completed in the upcoming sprint. This planning meeting aimed to

ensure that all team members could work on their assigned

segments of the system simultaneously, with minimal dependency

on other members' sections. For example, one member would

work on the appointments feature on the frontend whilst another

member worked on the appointment routes on the backend. This

task management structure enabled the entirety of the sprint

backlog to be completed by the end of the sprint.

4.1.2 Chosen Software. In section 3.3.2, the technology stack

was discussed briefly. In more depth, the frontend of the

application is implemented using a JavaScript library called

React. In conjunction with React, Redux was used to help

structure and centralise the state/data of the application. Redux is

a third-party state management library that is separate to React. It

is used primarily for its ability to create a global store of the state

of an application whilst changes to the store update the DOM.

[19]

On the backend of the application, Node.js and Express were used

to develop the application server of the system. The Express

framework was used to create the API which followed a REST

architecture. The API was created as an interface between the

frontend and the database. MySQL was used as the database,

because the data required for the application dealt with complex

relationships [12], hence it was essential to inherently incorporate

this characteristic into the database which is achieved using a

SQL/relational database.

4.1.3 Allocation of Features for Implementation. Developer A

was in charge of the frontend software design, state management

and security. Developer B was in charge of the database, the

application server, and authentication and authorisation. Finally,

developer C was in charge of the UI/UX, device compatibility,

and information capture.

4.2 Features and Implementation

4.2.1 File Structure. The file structuring of React projects are

unopinionated, meaning the developer decides how to structure

the relevant JavaScript and CSS files [15]. In this project’s case,

separating of files into their respective roles in the code was

essential to ensure separation of concerns [39]. The use of the

component tree in Appendix B provides a clear understanding of

the separation of different components. The system was broken up

into Containers and Components. The Containers are used to

house the different components. Hence, two folders were created

with titles namely Components and Containers. All UI

components reside in the Components folder and all the container

components housing the UI components reside in the Containers

folder. Structuring the files in this way allows for easier code

reuse as the components can be used many times throughout the

system. Additionally, it is important to reduce the amount of

nesting, because as nesting increases in the file structure the more

difficult is it to define the imports for files and to change those

imports if files are moved or changed. Hence, the folders and files

are at maximum four nests deep.

4.2.2 State Implementation.

4.2.2.1 Redux State Management. Redux was used to

achieve a central store which enables React to update the DOM on

changes of the central store (which it otherwise would not). To

make changes to the central store, actions are dispatched from the

different components. Once the actions are dispatched, they

invoke a Reducer which updates the state based on the command

of the action. When changes are made in the Reducers these

updates are made to the central store which then triggers a

subscription. The subscription passes the updated state as

component properties (props) to the respective component. The

components can then access the state via props. This process can

be seen below in Figure 2 [20].

Figure 2: Process of changing central store from a component

A file with a list of action types is imported and used in the

different action-creators. In these action-creators, different actions

are created, and each action is referenced with an action type.

These action types help determine what actions are changing the

Redux

Central Store

Stores entire

application state

Component

Action

Pre-defined „information

package“ (possibly

with payload)

Wants to manipulate app state

Reducers

Receive action and update

State (pure, sync functions,

no side-effects!)

Can be mult iple, combined reducers

(Automatic) Subscription

Passes updated state

to application

Dispatches

Reaches

Updates

Triggers

Passes udpated State as Props

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

central store. In the development browser a plugin called Redux

DevTools was used to monitor the Redux actions and the resulting

effects on the central store. The data that is relevant to the user

such as authentication and their user_id as well as all main state

of the application is managed in Redux.

State is temporary, and hence if the user reloads the page the

state will return to its initial predefined state. To prevent this from

occurring a npm library called Redux Persist is used to persist a

stipulated whitelist of the reducers to local storage of the user’s

browser. The state gets rehydrated on reload/refresh. [36] Local

storage is also used to keep track of information about the user

such as authentication (e.g. token) and their user_id.

4.2.2.2 Component State Management. In the application

a combination of component state and Redux was used. The state

that primarily deals with the UI of the application will be

managed by component-based state. Majority of the components

are function components1 and hence the useState hook was used

to deal with state in these components [15].

4.2.3 Security Implementation. Due to the security concerns

surrounding privacy of data, the security needed to be

implemented effectively throughout. Between the frontend and the

backend an HTTPS (Hypertext Transfer Protocol Secure)

connection was implemented. HTTPS secures the channel of

communication between the web application (frontend) and the

server (backend), hence the transmission of sensitive patient/staff

data between the two is encrypted. [35] HTTPS was implemented

on the UCT web servers with an installed activated certificate.

To protect the data that is stored in local storage, including the

persisted Redux state and other sensitive information about the

user’s session, two npm libraries were used. Secure-ls is an npm

library that encrypts and compresses the data in local storage. [37]

To ensure the best possible security of the data in local storage,

AES 2 (Advanced Encryption Standard) with compression was

used. The other npm library was redux-persist-transform-encrypt

which was used to encrypt the persisted Redux in local storage. A

secret key is given to the library to encrypt the data. [38]

To prevent users from highlighting confidential text and copying

it, the css command user-select: none; was used. Furthermore, the

application prevents autofill of login details on the sign in pages

as the application might run on computers that are accessed by

many users. The autocomplete attribute on the input elements

were set to a random string which results in the prevention of

autofill by the browser.

4.2.4 Routing. A package called react-router-dom was used to

handle the routing of the application. With the use of this package,

the user is able to navigate to different parts of the application

1 Function components are defined using function notation, and do not extend

React.Component. To manage state in these components, useState is required. [15]
2 Advanced Encryption Standard (AES) is an algorithm designed to secure data. AES

is a symmetric block cipher which is used to encrypt and decrypt data, from its

original form to ciphertext and back. [40]

while React only needs to determine which container to render

[21]. The reason for this implementation is to build a Single Page

Application (SPA). A SPA is a web application that has the aim to

provide a user experience similar to a native application [16]. The

transitions between screens are much faster and in the case of this

application the side navigation remains on the screen while

navigating through the application, hence removing the feeling of

constant refreshing and loading.

In the application, routing is implemented by wrapping the entire

application with a router known as BrowserRouter. It enables the

application to load a component for each route based on the URL

segments3. To explicitly define these routes, Route and Switch are

used. The Switch component wraps all Route components. When

Switch renders, it searches through the Route components and

determines which path matches the current URL segment. Once

the Switch finds the correct match, the respective Route is

rendered, and all other Route components are ignored. The

ordering of the Routes is important, as the first Route to match

will be rendered. Therefore, the more specific Route components

are defined first. [21]

To improve the performance of the application, React.lazy [15]

was used to reduce the number of imported components. As a

result, components that are not used as often, are only imported

when they are called upon, hence reducing the number of initial

imported components. React.lazy was used in the app component

for the staff profile and the patient profile as these components

will be used the least by users. When the user navigates to these

screens an initial loading symbol will be displayed while the

component is imported into application.

4.2.5 Main Actions. The main actions of the system include,

creating, retrieving, updating and deleting information. As

discussed in 4.2.2.1, actions are called from components in order

to make changes to the central store of the application. In most of

the action-creators a request is sent to the server requesting that

some action be performed with relevant data. Axios was used in

order to make requests to the server [22]. Actions that make

requests to the server are required to change the state of the

application. Hence, why the axios calls are made in the Redux

action-creators.

Axios is a “Promise based HTTP client” and hence it returns a

promise to ensure that an action can be called on completion of

the request [22]. The use of then() after the request helps identify

the response after completion of the request. By using ES6 arrow

functions [23], an anonymous function 4 is created to get the

response sent from the server. To inform the user of requests in

progress (loading), loading is set to true on dispatch of action start

and loading is set to false on either success or fail. On success or

3 URL segments are the added words at the end of the main URL e.g.

https://vms/dashboard.
4 Anonymous function is a function that has no name. [41]

Software Implementation of a Healthcare Management System Z. Bresler

fail of a request, a success or fail action is dispatched respectively,

and a reducer modifies the state.

Specific information is required for different calls to the server,

which may be, for example, the id of a patient or the data of a new

appointment. Either the information is sent as parameters (e.g. id

or limit) or is sent as data in the request (e.g. new appointment,

new staff member, etc.).

4.2.6 Patient Table. The Patient Table is a component reused

throughout the system. The component provides a view of the

patients in the overall system as well as the current patients in the

clinic and general practice. The table was developed to be

reusable throughout the system. In order to achieve this, the table

accepts props that are specific to the location in which the table is

being used. By implementing the table in this way, the table is

able to be used anywhere in the system and any data, headings or

other specifics (such as buttons, actions and navigation) can be

specified by sending the relevant information via props.

The Patient Table is a parent component that houses many

Patient Row components. Each Patient Row component is a

patient’s data and hence the data array that is sent to the table via

props is then mapped into each Patient Row component. With the

use of JavaScript’s map [24], each iteration of the data is passed

off as props to a new Patient Row component.

In order to improve the user experience, pagination was used

when fetching data. This incorporates sending a limit and page

number to the API in order for the server to return a limited

amount of data whilst returning data that is relevant to the page

number sent. Pagination improves the performance of the

application and reduces the time spent contacting the server. [43]

4.2.7 Dashboard. The Dashboard of the sedation clinic is the

page (Container) that provides an overall state view of the

application. The user is able to toggle between two views of the

Patient Pool table, which are All Patients and Current Visits. This

is implemented by dispatching an action to Redux to alter the state

of view of the table. The value in state is then used to either fetch

all patients in the database or to fetch all started visits in the

current clinic.

The Dashboard in the general practice provides an overall view of

the patients in the signed-in staff member’s general practice. The

user is able to toggle between two views of the Patient Pool table,

which are My Patients and Current Visits. This is implemented in

the same way as the sedation clinic dashboard, but different API

endpoints are called. The My Patients view displays all patients

that are linked to the signed-in staff member, while the Current

Visits view displays all patients whose visits have started in the

general practice.

4.2.8 Appointments.

4.2.8.1 Sedation Clinic Appointments. On the

Appointments page in the sedation clinic a list of Sedation Clinics

is displayed – this is achieved using the map function explained in

4.2.6 – where the data and actions for each clinic is mapped into a

new Sedation Clinic component. On navigating to this page, an

algorithm runs to determine which upcoming sedation clinic to

select by default. On each re-render of the page an asynchronous

request is made to the database to fetch the upcoming sedation

clinics and a function is called on the completion of the fetch to

find the closest date to the current date; once this date is obtained

that date becomes the default selected date.

The user is able to book patient appointments for scheduled

clinics. The available spaces in the clinic is checked in Redux to

determine if the new appointment can be added to the selected

clinic, if not the modal state is set to true and the user will be

informed that they cannot add the patient to the clinic as it is full.

When adding an appointment, the patient is searched for in the

database to determine if they can be added to the clinic as they

cannot be booked twice in the same clinic.

On selecting the radio button in the patient row, the patient id

is stored in component state of the Sedation Clinic container

which is passed as props to the Patient Table which determines if

the actions should show. The actions include edit, delete and

check-in (only if the clinic date is the same as the current date, the

check-in action will be available). If the user selects check-in, an

action is dispatched to Redux and a PUT request is made to the

server to request that the relevant tables, for the start of a visit, are

created. Once the action is complete the list of action buttons will

disappear, and the component state is wiped. If the user selects the

same patient, the check-in action will have changed to start visit,

which when selected will start the visit of the patient by making a

request to the API and resulting in the patient being moved into

the first phase of the system (add to the triage Reducer). The user

will be able to view the patient in the Current Visits view on the

Dashboard.

4.2.8.2 General Practice Appointments. The calendar used

is a calendar API called FullCalendar [25]. The appointments are

fetched on re-render of the page and the appointments are sent

from Redux as props to the FullCalendar component. In order for

the calendar to handle adding, removing, selecting, resizing and

dropping, event functions were created and sent as props to the

FullCalendar component. On selecting a day, the calendar view is

altered to the day view. The user can then select a time which

changes the component state to show the add appointment modal.

The form in the modal captures the information and on save,

dispatches an action which sends a request to the API to create an

appointment. On selecting an appointment, the component state is

changed to show the modal. The modal accepts the data from the

selected appointment as props. The component state of the form

determines if the modal is being used for editing or adding an

appointment by checking whether props is undefined or not. The

modal allows the user to edit, delete and start the visit. On

selecting start visit, an action is dispatched, and a request is made

to start the patient visit. On success the appointment colour is

changed by adding a hex colour to the appointment object.

4.2.9 Phase Management. The system’s main feature is to

manage the patients through the five different phases of a visit

which include Waiting for Triage; Waiting for Theatre; In

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

Theatre; Waiting for Disposition; and Waiting for Exit. Each one

of these phases is a navigation item in the navigation bar. Each

phase uses the Patient Table component to display the list of the

patients in that phase. The user is able to click the three dots

(options) which provides a dropdown list of actions. Two of the

actions allow the user to transfer the patient through the phases,

either backwards or forwards. Transferring the patient is

implemented by dispatching an action in Redux which makes a

request to the server to move that patient into the previous or next

phase (depending on which action is selected in the dropdown).

When the request is completed the “success” action is dispatched

which calls the reducer and removes the patient out of the phase

(deletes the patient from the array of patients in that reducer’s

state). Refer to Appendix H for screenshots of the application.

4.2.10 Capture Information. In the dropdown list of actions

provided, the user can choose to Capture Info which will navigate

them to the Edit screen where the different tabs represent the

forms required for the visit. (A team member handled the

capturing of information). When the user has clicked the Capture

Info option the action to fetch the forms for the relevant Patient

will be dispatched (using the patient id). The data is returned from

the server in one JSON object. In the reducer the response is

separated by its keys and the state is updated for each respective

form state. The state of each form is sent to the respective form

component in the Edit container. Local state is used in the forms

as this data is temporary until the user has saved what they have

changed. When the user saves, it dispatches an action to update

the data in the database for that specific visit and patient. The

update is also made in Redux on success of the request to the

server.

In the procedure notes, the user is able to add ICD10 codes, here

an API of ICD10 codes [26] was used to ensure that there was a

correct mapping between the code and the description. It also

increased the speed at which a user can add codes to a visit. An

algorithm was created for adding and removing codes. The adding

only adds the code to Redux if the code does not appear in the list

already. The first two codes were given a type of primary and

secondary respectively, and the rest are given a type of additional.

Hence when adding, the type was determined based on the length

of the list at the time of adding the next ICD10 code. In order to

remove the code, the algorithm needs to check what the next

code’s type is and check what the to-be-deleted-code’s type is and

determine which codes need to change their type value.

4.2.11 Admin Panel. The admin panel provides a management

application for all the data in the application. The admin is able to

register staff members and on success of the server registering the

staff member, an email with a magic link will be sent to the

registered staff member’s email address (discussed in detail in a

team member’s report). Once the user clicks on the magic link,

they will be directed to a page to change their password. The link

is valid for as long as the token is valid. The token placed in the

URL will be used to authenticate the request to change the

password of the staff member. On success of the request, the user

will be navigated to the sign in page of the application.

In the admin panel, the admin is able to delete and edit all patients

and staff members. They are also able to add, edit, end and delete

sedation clinics. For the general practice, the staff members need

to have access to prior information about the patients but to

reduce exposing sensitive information to many different people,

only the admin can grant this permission. Hence the selected

patient id and staff id is sent to an API endpoint where the patient

id is added to the selected staff member’s patients. On success of

the request, the patient is added to Redux. (Refer to Appendix H

for screenshots of the application and admin panel).

5 TESTING METHODS

5.1 User Testing

In order to determine the success of the system in regard to its

usability (UI/UX) and functionality, the team conducted usability

tests. The tests were structured into two phases. Phase one was

conducted after the completion of the foundation of the

application – most were features completed. The tests were

conducted with six users, each of these users had some

background knowledge of computer science, UI/UX or they work

in industry. By selecting these participants, it provided the team

with a good technical analysis of the system and gave good

insight into what did and did not work. Phase two was conducted

after gaining feedback from the phase one usability tests and

applying the changes to the system. Phase two tests were

conducted with 3 users, each either had healthcare experience,

have used a healthcare system or are involved in healthcare. Phase

two provided information about what people in healthcare thought

about the system and if it could be useful and effective in

deployment. Finally, as part of phase two a demo to the project

proposer was given to gain feedback on the completed system to

ensure the requirements were met.

The usability tests all followed the same order which was first

obtaining written consent from the participants prior to the test; on

the day of the test, verbal consent was obtained before continuing

with recording of the video chat; an explanation was given to

ensure the user completely understood what their role was in the

study and what they would be doing in the test; and then the test

would commence with the tester asking the user to complete a set

of tasks on the application. (Refer to Appendix E for set of tasks)

5.2 Software Testing

Software testing involved testing the inner workings of the

software and ensuring the software performs how it was intended

to. In order to conduct testing on the software a JavaScript Testing

Framework known as Jest [27] was used. The reasons for using

Jest was that it is easy setup and use; it is a favoured choice for

testing React applications; it is compatible with Node.js [42]; and

the team has some experience using Jest. Tests were conducted

Software Implementation of a Healthcare Management System Z. Bresler

separately for the frontend and the backend of the application. On

the frontend the main features were tested; on the backend the

most significant routes of the API were tested to ensure the

correct implementation of the CRUD operations.

6 RESULTS AND DISCUSSION

6.1 Phase One

Task: Link a patient to a staff member. The user was unable to

link a patient to a staff member because by default no staff

member was selected in the list of staff members. Additionally,

the +Patient Link button was confusing as it was displayed even

though a staff member was not selected. The user then clicked the

button with no selected staff member to a link a patient resulting

in an error. Otherwise, users were able to understand the linking

of patients to staff members and found it easy to complete the

task.

Task: Register a staff member. A user entered a name without

providing a first and last name. Hence, this means that there is no

validation on the full name field. Additionally, when they clicked

the register button an error with the feedback modal occurred

resulting in a crash of the application. In addition to this, users did

find that the staff register button was clear and easy to find, and

that filling in the information was quick and simple.

Task: Add a sedation appointment. A user was unaware that they

had to select a clinic before adding an appointment. As a result,

when the modal showed it caused an error as the system tried to

select the selected clinic’s date (which was undefined) in the

dropdown of clinic dates. Most users were confused as to what the

difference between scheduled and unscheduled was. Otherwise,

users found that adding an appointment was easy to understand

and that the modal was clearly laid out and organised.

Task: Check-in a patient and start their visit. Users struggled to

identify how to check-in the patient. It took time for them to

realise they needed to select the checkbox in the patient row in

order for a list of actions to show. Users were unsure about how to

start a visit once they checked-in the patient due to the actions

disappearing after check-in of the patient. Additionally, the

checkbox made the users think they were able to select many

patients when they should only be allowed to select one.

Task: Fill in the appropriate information for the current phase.

Users were unsure of how to capture the information for the

current phase. They liked that if they clicked the three dots a

dropdown would show but the list item, edit, was unclear. Users

thought that the edit was to edit the patient details. One user

clicked on the edit button which resulted in an error as the

application tried to navigate to a patient with id of undefined. In

the sedation clinic forms all the sliders had a max value of 100

which made it impossible to fill in details where the value could

be over 100. In the procedure notes the user was not sure after

clicking the microphone button if the voice-to-text had started.

Additionally, the user was confused about how to stop the voice-

to-text once it had started as the icon did not change. Furthermore,

when adding ICD10 codes the user was not sure if clicking the +

(“plus”) next to the code was adding the code to the notes as the

modal did not close nor did it give feedback as to which ones had

been added. Otherwise, users enjoyed the fact that it was so easy

to navigate through the different forms in both the sedation clinic

and general practice. Users found the forms easy to use,

understandable, organised, and easy to access and edit.

Task: Sign into the application. The user entered incorrect details

for their account, but they were unsure what happened because the

system did not inform the user of the incorrect action. Otherwise,

all users enjoyed the simplicity of the sign in page and found the

interface clear and user friendly.

General issues included modals not closing on the success of an

action (e.g. linking a patient to a staff member); no feedback on

the completion of an action (e.g. deleting an appointment); errors

with data not loading correctly into the correct components.

General positives were that users felt the system was built with

the user in mind; the actions were simple enough to understand;

really enjoyed the voice-to-text feature; they liked the colour

scheme; and finally users found it easy to complete almost all

tasks except for a few issues mentioned above.

6.2 Phase Two

After implementing the fixes and changes discussed in 6.1, the

team also ensured that all gaps of the system had been completed.

Once the team was happy with the system, phase two of usability

testing commenced.

All users were able to complete all the tasks they were asked to

complete. They commented that it was easy for them to manage

the patients of the system and that the flow of the system was

intuitive and easy to grasp. The most important feedback was

about the capturing of information as all three participants stated

that the forms easily organised the information into a clear

interface. The most liked feature was the addition of the voice-to-

text as it provided the users with a quick and easy way to take

down notes. No problems arouse and users really enjoyed the

experience of using the system and got the hang of it quickly.

They also found the system to be responsive and efficient.

A demo of the system was conducted with the project proposer

after the above testing was completed. In this demo, a

walkthrough of the application was shown, making sure to explore

every feature and action the user could accomplish. The demo was

successful as the project proposer was impressed by the

application the team had built and he stated that the application

met all the requirements.

6.3 Software Testing

6.3.1 Frontend testing. Jest enabled the testing of the reducers

in Redux. The tests conducted ensured that the functional

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

requirements of the software were correct. The focus of the testing

was on the reducers because it allowed a reflection of the action-

creators’ results on the different instances of the central store

(Reducer). Hence, the unit tests tested whether given some data

that the action-creator had correctly changed/updated the Reducer.
All tests that were conducted were successful, meaning all

functional requirements were successfully implemented using

Redux. (Refer to Appendix F for screenshots of the successful

tests run on the frontend.)

6.3.2 Backend testing. The backend of the application was

tested using the Jest framework. The tests on the backend were

conducted to ensure the CRUD operations of the system were

implemented correctly. The testing ensured that the API was

successfully changing/updating the database and thus reassuring

the success of the functional requirements.

All tests that were conducted were successful meaning the

CRUD operations implemented using Node.js was successful in

completing the different CRUD operations. (Refer to Appendix G

for screenshots of the successful tests run on the backend.)

7 REFLECTION AND RECOMMENDATIONS

A full acceptance test could not be conducted as the clinics were

postponed during the Covid-19 lockdown in South Africa. Hence,

the system could not be implemented in the area in which it would

be used in deployment which prevented the team from analysing

the improvements and advantages that the system would provide

to VMS. Furthermore, the restrictions implemented reduced the

ability to ascertain the achievement of the aims set out for the

application developed. The success of the application was thus

determined by the usability tests and the software tests conducted.

Additionally, due to Covid-19 the proposer (who is a doctor) was

very busy during the development of the system. Hence, the

progress and feedback meetings with him were irregular.

Issues arouse from the separation of responsibilities of the project

earlier on in the development of the application. We solved the

issue by separating the project into its three main parts (Backend,

Frontend and UI/UX) and hence we were able to allocate the

sections effectively.

The implementation of the Scrum methodology worked very well

for this project. The team found that the morning stand-ups

provided a great way to align with one another.

If the project was to be replicated, the use of a simpler task

management tool such as Trello, would be advised. Following an

agile methodology would be beneficial for developing such a

complex project and to ensure that changes to the system could be

managed. Using a VCS (Version Control System) such as Git is

essential for the success and managing of the development of the

system. The team found that the use of Git made it easy to manage

our different features and handle the combining of the different

versions of the system.

8 CONCLUSIONS

This paper aimed to describe the development of a web

application which would be used as a software solution to

improve the operations of Vision Medical Suite and how it can

effectively manage their clinics, stakeholders and the relevant

information pertaining to operational requirements.

Due to the completion of the development of the application and

the satisfaction of the team, the choice of software for

development was effective in handling the different tasks and

features of the system. Additionally, the software is fast, secure

(based on best practices) and maintainable (because of the user

manual, clear code, comments and documentation). Although the

team was unable to determine the success of the system in the

actual clinics, we could still derive success from the tests

conducted.

The results of the usability tests have provided evidence that the

software is easy to use. Users were able to complete all the tasks

they were asked to do thus we can decisively say that in terms of

the usability of the system it achieves its goal of being a simple,

clean, and easy to use interface that manages to help its users

easily achieve the tasks they set out to do. Additionally, the

project proposer was satisfied with the application and that it had

met the system requirements.

In regard to the software tests run on the system, the unit tests

were implemented on the main features of the system and

highlighted the core functionality of the application. The success

of these tests shows that the inner workings of the software, both

on the frontend and backend, work correctly and that the

developed system has met the stipulated software requirements.

9 FUTURE WORK

If the system is to be maintained and development continued,

some additional features to add would include integrating a

messaging system into the application so that staff can talk to one

another directly through the application; in addition to the

calendar on the application, connecting to the Google calendar

API to mirror the appointments and schedules onto staff

members’ Google calendar would help improve managing their

patients’ appointments; and adding an overview page to display

the average waiting times in each phase of the clinic and having a

list who is next to be checked-into the clinic.

ACKNOWLEDGEMENTS

I would like to thank my team, Justin Dorman and Chad Piha, for

coming together to produce an impressive application. I would

also like to thank Aslam Safla, Melissa Densmore and Dr. Moosa

for their invaluable input.

Software Implementation of a Healthcare Management System Z. Bresler

REFERENCES

[1] South African Government, 2013. Protection of Personal Information Act.

[2] Facebook, 2018. GitHub: facebook/react. Retrieved September 8, 2020 from

https://github.com/facebook/react/blob/master/LICENSE

[3] Node, 2020. GitHub: nodejs/node. Retrieved September 8, 2020 from

https://github.com/nodejs/node/blob/master/LICENSE

[4] Express. 2020. GitHub: expressjs/express. Retrieved September 8, 2020 from

https://github.com/expressjs/express/blob/master/LICENSE

[5] MySQL. 2020. MySQL: Products – Community Edition. Retrieved September

8, 2020 from https://www.mysql.com/products/community/

[6] Adobe. 2020. Adobe: Adobe XD. Retrieved September 8, 2020 from

https://www.adobe.com/africa/products/xd.html

[7] OpenMRS. 2020. OpenMRS. Retrieved September 13, 2020 from

https://openmrs.org/

[8] HospitalRun. 2020. HospitalRun. Retrieved September 13, 2020 from

https://hospitalrun.io/

[9] TeamDesk. 2020. Medical Practice Manager database. Retrieved September 13,

2020 from https://www.teamdesk.net/

[10] Floyd, C. 1984. A Systematic Look at Prototyping, in: Budde, R., Kuhlenkamp,

K., Mathiassen, L. and Zullighoven, H. (Eds.) Approaches to Prototyping,

Springer-Verlag: Heidelberg, 1-17. DOI: https://doi.org/10.1007/978-3-642-

69796-8_1

[11] Siau, K., & Lee, L. 2001. Role of Use Case Diagram in Requirement Analysis.

AMCIS 2001 Proceedings, 251.

[12] Codd, E. F. 1990. The relational model for database management: version 2.

Addison-Wesley Longman Publishing Co., Inc. DOI:

https://dl.acm.org/doi/pdf/10.5555/77708

[13] Fielding, Roy Thomas. 2000. Architectural Styles and the Design of Network-

based Software Architectures. PhD. Dissertation. University of California,

Irvine, 2000.

[14] M Fikri Setiadi. 2018. 7 Steps to Create Simple CRUD application using

Node.js, Express and MySQL (November 2018). Retrieved September 15, 2020

from http://mfikri.com/en/blog/nodejs-mysql-crud

[15] React. 2020. A Javascript library for building user interfaces. Retrieved

September 15, 2020 from https://reactjs.org/

[16] Michael Mikowski and Josh Powell. 2013. Single Page Web Applications:

JavaScript end-to-end (1st. ed.). Manning Publications Co., USA.

[17] Schwaber, K., & Beedle, M. 2002. Agile software development with Scrum

(Vol. 1). Upper Saddle River: Prentice Hall.

[18] Artlassian. 2020. Jira Software. Retrieved September 16, 2020 from

https://www.atlassian.com/software/jira

[19] Redux. 2020. Redux: A Predictable State Container for JS Apps. Retrieved

September 17, 2020 from https://redux.js.org/

[20] Maximilian Schwarzmüller. 2020. React - The Complete Guide (incl Hooks,

React Router, Redux). Retrieved September 17, 2020 from

https://www.udemy.com/course/react-the-complete-guide-incl-redux

[21] React Router. 2020. React Training/ React web guides. Retrieved September

20, 2020 from https://reactrouter.com/web/guides/primary-components

[22] axios. 2020. npmjs.com: axios. Retrieved September 17, 2020 from

https://www.npmjs.com/package/axios

[23] w3schools. 2020. ECMAScript 6 – ECMAScript 2015. Retrieved September

17, 2020 from https://www.w3schools.com/js/js_es6.asp

[24] w3schools. 2020. JavaScript Array map() Method. Retrieved September 17,

2020 from https://www.w3schools.com/jsref/jsref_map.asp

[25] FullCalendar. 2020. FulCalendar Docs. Retrieved September 18, 2020 from

https://fullcalendar.io/docs

[26] Brian Fritz. 2019. ICD10 code API. Retrieved September 18, 2020 from

icdhttp://icd10api.com/

[27] Jest. 2020. Retrieved September 22, 2020 from https://jestjs.io/

[28] Anurag Kumar, and Ravi Kumar Singh. 2016. Comparative analysis of

angularjs and reactjs. International Journal of Latest Trends in Engineering and

Technology. 4, vol 7. 225-227. DOI: http://dx.doi.org/10.21172/1.74.030

[29] Eric Wohlgethan. 2018 Supporting Web Development Decisions by Comparing

Three Major JavaScript Frameworks: Angular, React and Vue.js. Ph.D.

Dissertation. Hochschule für Angewandte Wissenschaften Hamburg

[30] TechMagic. 2018. React vs Angular vs Vue.js – What to choose in 2020.

Retrieved April 30, 2020 from https://medium.com/@TechMagic/reactjs-

vsangular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d

[31] Jens Neuhaus. 2017. Angular vs. React vs. Vue: A 2017 comparison. Retrieved

April 30, 2020 from https://medium.com/unicorn-supplies/angularvs-react-vs-

vue-a-2017-comparison-c5c52d620176

[32] Vue.js. 2020. Comparison with Other Frameworks. Retrieved May 6, 2020

from https://vuejs.org/v2/guide/comparison.html

[33] B. Lin, Y. Chen, X. Chen and Y. Yu. 2012. Comparison between JSON and

XML in Applications Based on AJAX. International Conference on Computer

Science and Service System, Nanjing, 2012, pp. 1174-1177, DOI:

10.1109/CSSS.2012.297.

[34] R. G. Lanergan and C. A. Grasso. 1984. Software Engineering with Reusable

Designs and Code. IEEE Transactions on Software Engineering, vol. SE-10, no.

5, pp. 498-501, Sept. 1984, DOI: 10.1109/TSE.1984.5010273.

[35] CloudFlare. 2020. What Is HTTPS? Retrieved September 29, 2020 from

https://www.cloudflare.com/learning/ssl/what-is-https/

[36] Zack Story. 2019. Npm redux-persist. Retrieved September 26, 2020 from

https://www.npmjs.com/package/redux-persist

[37] Varun Malhotra. 2020. Npm secure-ls. Retrieved September 26, 2020 from

https://www.npmjs.com/package/secure-ls

[38] Marshal Bowers. 2018. Npm redux-persist-transform-encrypt. Retrieved

September 26, 2020 from https://www.npmjs.com/package/redux-persist-

transform-encrypt

[39] Hürsch, Walter L., & Lopes, Christina Videira. 1995. Separation of concerns.

DOI: 10.1.1.29.5223

[40] Pub, NIST FIPS 2001. 197: Advanced encryption standard (AES). Federal

information processing standards publication, 197(441), 0311.

[41] JavaScript Anonymous Functions. 2020. Introduction to JavaScript anonymous

functions. Retrieved September 29, 2020 from

https://www.javascripttutorial.net/javascript-anonymous-functions/

[42] Jash Unadkat. 2019. Top 5 Javascript Testing Frameworks. Retrieved

September 24, 2020 from https://www.browserstack.com/guide/top-javascript-

testing-frameworks.

[43] Slack engineering. 2020. Evolving API Pagination at Slack. Retrieved

September 30, 2020 from https://slack.engineering/evolving-api-pagination-at-

slack/

[44] Vision Medical Suite. 2020. Vision Medical Suite: about us. Retrieved

September 2, 2020 from http://www.visionmedicalsuite.co.za/about-us/.

[45] w3schools. 2020. JavaScript HTML DOM. Retrieved September 17, 2020 from

https://www.w3schools.com/js/js_htmldom.asp

[46] Richards, Mark. 2015. Software architecture patterns (Vol. 4). 1005

Gravenstein Highway North, Sebastopol, CA 95472: O'Reilly Media,

Incorporated.

https://github.com/facebook/react/blob/master/LICENSE
https://github.com/nodejs/node/blob/master/LICENSE
https://github.com/expressjs/express/blob/master/LICENSE
https://www.mysql.com/products/community/
https://www.adobe.com/africa/products/xd.html
https://openmrs.org/
https://hospitalrun.io/
https://www.teamdesk.net/
https://www.atlassian.com/software/jira
https://reactrouter.com/web/guides/primary-components
https://www.w3schools.com/jsref/jsref_map.asp
https://fullcalendar.io/docs
https://jestjs.io/
http://dx.doi.org/10.21172/1.74.030
https://medium.com/@TechMagic/reactjs-vsangular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/@TechMagic/reactjs-vsangular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/unicorn-supplies/angularvs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angularvs-react-vs-vue-a-2017-comparison-c5c52d620176
https://vuejs.org/v2/guide/comparison.html
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.npmjs.com/package/redux-persist
https://www.npmjs.com/package/secure-ls
https://www.npmjs.com/package/redux-persist-transform-encrypt
https://www.npmjs.com/package/redux-persist-transform-encrypt
https://www.javascripttutorial.net/javascript-anonymous-functions/
https://www.browserstack.com/guide/top-javascript-testing-frameworks
https://www.browserstack.com/guide/top-javascript-testing-frameworks
https://slack.engineering/evolving-api-pagination-at-slack/
https://slack.engineering/evolving-api-pagination-at-slack/
http://www.visionmedicalsuite.co.za/about-us/
https://www.w3schools.com/js/js_htmldom.asp

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

SUPPLEMENTARY INFORMATION

APPENDIX A: USE CASE DIAGRAM

Software Implementation of a Healthcare Management System Z. Bresler

APPENDIX B: FRONTEND COMPONENT

TREE

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

APPENDIX C: ERD OF DATABASE

Software Implementation of a Healthcare Management System Z. Bresler

APPENDIX D: BACKEND COMPONENT TREE

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

APPENDIX E: USER TESTS - HIGH LEVEL

TASKS

1. Log in to admin panel

2. Register staff member

3. Add dynamic data for everything

4. Add a clinic for today

5. Link patients to yourself

6. Navigate to your email, and change your password

7. Register a patient

8. Create an appointment with recently registered patient

9. If you wanted to increase the capacity of the clinic, what

would you do?

10. This new patient walks in for his appointment. Please check

them in.

11. The staff is now for him. Begin his visit.

12. Locate the location of the visit

13. Fill in the appropriate information for current phase

14. Once done, transfer the patient to the next phase

15. Repeat until the patient until the patient is ready to be exited

16. When ready, exit the patient from the visit

17. View patient profile

18. Edit info from the visit just ended

19. Redirect to general practice

20. Create an appointment for today

21. Start the visit for that patient

22. Edit all info for that visit

23. Logout

Software Implementation of a Healthcare Management System Z. Bresler

APPENDIX F: SUCCESSFUL FRONTEND UNIT

TESTS

Software Implementation of a Healthcare Management System October, 2020, Cape Town, South Africa

Software Implementation of a Healthcare Management System Z. Bresler

APPENDIX G: SUCCESSFUL BACKEND UNIT

TESTS

Software Implementation of a Healthcare Management System

APPENDIX H: WEB APPLICATION SCREENSHOTS

Sedation Clinic:

Image 1: Application login screen Image 2: Dashboard

Image 3: Creating a sedation clinic appointment Image 4: Sedation clinic appointments

Image 5: Edit, Check-in and delete appointment function Image 6: Edit sedation clinic capacity

Image 7: Sedation clinic ongoing visits Image 8: Patient actions

Software Implementation of a Healthcare Management System

Image 9: Waiting for triage table with patient actions Image 10: Additional screening form (with validation)

Image 11: Moving patient between phases feedback modal Image 12: Completing sedation clinic visit

Image 13: Patient Profile Image 14: Register Patient

Image 15: Add ICD10 code modal

Software Implementation of a Healthcare Management System

General Practice (GP):

Image 16: GP Dashboard Image 17: GP appointments

Image 18: Create GP appointment (with patient list dropdown) Image 19: Appointment actions

Image 20: Patients undergoing their appointment Image 21: GP Treatment Information Capture (w/ Voice to text)

Image 22: GP patient profile

Image 21: GP Treatment Information Capture

(with Voice to text)

Software Implementation of a Healthcare Management System

Admin Panel

Image 23: List of all patients Image 24: Editing patient details

Image 25: Confirmation modal Image 26: Register staff

Image 27: List of all staff members Image 28: Dynamic data

Image 29: Adding beneficiaries dynamic data Image 30: Create sedation clinic (with validation)

Software Implementation of a Healthcare Management System

Image 31: Past sedation clinics Image 32: Patient-staff link

Mobile Application - Sedation Clinic

Image 33: List of all patients table Image 34: Book appointment (w/ validation) Image 35: Appointments actions

Image 34: Book appointment

(with validation)

Software Implementation of a Healthcare Management System

Image 36: Appointments Image 37: Feedback modal Image 38: Mobile form

Image 39: Exit to modal Image 40: Expanded hamburger menu

Software Implementation of a Healthcare Management System

Mobile Application- General Practice:

Image 41: Linked patients table Image 42: Appointments Image 43: Book appointment. Image 44: Patient profile

Image 45: Patient profile (cont.) Image 46: GP form

	Title: Software Implementation of a Healthcare Management System
	Author: Zachary Bresler (BRSZAC002)
	Project Abbreviation: Vision
	Supervisor: Aslam Safla

