UNIVERSITY OF CAPE TOWN é
W —

DEPARTMENT OF COMPUTER SCIENCE

CS/IT Honours
Final Paper 2020

Title: Developing a Hospital Management System

Author: Chad Piha

Project Abbreviation: Vision

Supervisor(s): Aslam Safla

Category Min | Max | Chosen
Requirement Analysis and Design 0120 20
Theoretical Analysis 0125 0
Experiment Design and Execution 0120 0
System Development and Implementation 0] 20 20
Results, Findings and Conclusions 10| 20 10
Aim Formulation and Background Work 1015 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section 0|10

allowed only with motivation letter from supervisor)

Total marks

80

Developing a Hospital Management System

A system tailored for Vision Medical Suite

Chad Piha
Computer Science
University of Cape Town
South Africa

chadpiha23@gmail.com

ABSTRACT

Vision Medical Suite is a Non-profit Organization that provides
free medical and dental care to those in need. They currently
manage all their operations manually, which is simply no longer a
viable approach and therefore they require a hospital management
system to manage their operations more accurately and efficiently.

Vision has a unique set of operations that no software solutions on
the market currently provide for. Therefore, our goal was to
develop a full-stack web application that streamlines the
management of staff, patients and the wvarious procedures
performed in Vision’s operations. The system needs to be fast,
reliable, secure, and easily maintainable whilst simultaneously
making tasks easy to complete, and enabling the management of
staff and patients to become a more efficient process which will
facilitate the staff’s capacity to coordinate care.

A single-page web application was developed using a React.js
front-end combined with a Node.js server which made use of the
Express.js framework, and a MySQL database. This application
includes features such as a booking system, a tailored phase-
transition system that captures patient information at each
transition, voice-to-text, and an ICD10 API, among other
functionalities.

The results of the usability tests found that the UI/UX was intuitive,
simple, easily navigable, and visually appealing. Therefore, we
were able to conclude that the system was a success in terms of the
UI/UX. The non-functional requirements were met, and unit tests
were also conducted to verify that the functional requirements of
the system were met. However, due to Covid-19, we were unable
to deploy the system in the hospital to perform an acceptance test
as no clinics were running at the time.

CCS CONCEPTS

« Computer systems architecture = Real-time systems .
Information systems —> Data management systems * Human-
centred computing = Human computer interaction (HCI) > HCI
design and evaluation methods

KEYWORDS

Hospital management system, User Interface / User Experience,
Information capture, Validation, Error handling, Voice-to-text

1 INTRODUCTION

Over the last 40 years, information systems have progressively
become an integral part of modern healthcare, with varying degrees
of success in improving patient care. These hospital management
systems focus on automating the many vital daily processes in order
to streamline the administrational needs of hospitals. This helps
them operate more efficiently, thereby creating better hospital
records and allowing more patients to be treated, whilst maintaining
high standards of care. [1]

Vision Medical Suite (VMS) is a Non-Profit Organization that
provides free medical and dental care to vulnerable communities
and beneficiaries. VMS has two aspects to their operations. The
first is a monthly sedation clinic where they provide their services
to beneficiaries such as orphanages, frail care centres, and care
facilities for the physically and mentally challenged. The second
facet is their daily general practice where they treat walk-in patients
as well as members of the beneficiaries. VMS currently manage all
operations manually which has created an environment where
organization and efficiency are not at their maximum capacity. It is
well understood that timely and accurate information is a
fundamental pre-requisite for the delivery of high-quality patient
care, therefore these inefficiencies need to be addressed. [2]

Vision lacks the necessary funding to outsource the development
of a hospital management system from a third party and have
therefore liaised with the University of Cape Town for assistance.
As a result, our team has been tasked with developing a full-stack
web application that streamlines the management of staff, patients
and the various processes executed in Vision’s operations.

The main aim of the system is to heighten the efficiency of Vision’s
operations. As a result, the system needs to be fast, reliable, secure,
easily maintainable, intuitive and easy to use in the fast-paced,
time-critical environment that characterizes Vision’s operations.
The core functionality of the system requires staff to have the
ability to register patients, book appointments, capture and store
patient visit records for future viewing, and manage patient
transitions throughout their hospital visit for both the sedation
clinic and general practice. The system also requires an admin, who
are the higher organizational level users, and are responsible for

creating sedation clinics, registering and managing staff roles and
permissions, to ensure access control. This system should also be
compatible with desktop, tablet and mobile devices.

This report will begin by summarizing the background research
performed before development began. It then describes the
requirements analysis and all the functional and non-functional
requirements of the system. Thereafter, the design of the system is
explained and all decisions are justified. The system development
and implementation are then critically discussed, with the focus on
how the design was implemented, and the process of how the
requirements were met and the final product was developed. The
testing process and subsequent results are then examined and are
linked to the success of the project. The paper is concluded by
measuring the overall success of the project, measuring the possible
impact this system has for Vision and finally giving a brief
reflection on the entire project by outlining possible future
extensions, and providing recommendations to those trying to build
a similar system in the future.

2 BACKGROUND RESEARCH

Extensive background research was performed to ensure that the
team had a thorough understanding of how to implement a system
of this nature in the best way possible. Each team member based
their research on the sections they were responsible for. It was also
important to understand what ethical, legal, and professional
limitations that could arise and thus needed to be accounted for.

2.1 Standardization formats

As I was responsible for the information capture, it was important
to research the different data standardization formats as the data
being transmitted from the web app to the database needs to be
consistent. The two most popular alternatives are JavaScript Object
Notation (JSON) and Extensible Markup Language (XML).
According to Sabanovi¢ et al. one should use JSON technology
when dealing with a small amount of data. JSON is faster as it
consumes far less memory space, and it is closer to the original
object structure. XML should be used for larger data transfers,
however, when segmentation is done for large transfers of data, one
should use JSON. Sabanovié¢ also states that JSON should be
adopted for web applications as it is a very thin object which can
be communicated to any application. [20] JSON is also a subset of
JavaScript and provides an ideal format for exporting data from a
web app to a database since every programming language can parse
JSON. [21] This makes it a natural fit for web applications and
therefore, JSON was our chosen standardization format.

2.2 User Interface/User Experience (UI/UX)

The UX works conjointly with the Ul to create an effectively
designed application. A seamless design is imperative as it has a
direct correlation with the rate at which users can accomplish a task,
which is important in the system being developed. [26]

A study by Silvennoinen et al. showed how colour is seen as an
organizer of information and how it creates an overall clearer
impression of the system.[28] A white background was found to
provide a high level of readability and quick perception of text-
based content. [27] Moreover, it adds space to the screen which
avoids the feeling of the pages feeling overloaded. [33] This should
be used in combination with the colour blue as it symbolizes
healing and tranquillity. This will also show contrast, allowing for
greater scannability as text elements can be read at a glance, thus
improving task-completion rates. [30]

For feedback, it is good practice to have a dialog box indicating the
success or failure of user actions. [10] All validation errors should
be highlighted in red as the colour is associated with error, and it
grabs the user’s attention. [4] Validation errors should also be in-
line with the input. A study has shown that inline validation has a
22% decrease in errors made; a 31% increase in satisfaction rating;
a 42% decrease in completion times; and a 47% decrease in the
number of eye fixations. [8] These forms of feedback adhere to
Shneiderman’s golden rule of interface design of “Offering
informative feedback.” [5]

It was found that one should use a hamburger menu on mobile
devices as it saves limited screen space while allowing information
to be presented more clearly as pages are less busy. This improves
usability and speed as users can get to the desired screen easily and
quickly, which is important in a hospital system. CSS3 should also
be utilized as it can reduce data transfer, particularly with images.
[26,31]

2.3 Related Work

We analysed some of the market's leading open-source and paid
hospital management systems, namely Sapphire, Medstar HIS,
eHospital, Athenahealth, TeamDesk, OpenMRS, and OpenVista.
The functionalities common across all these platforms include staff,
patient, financial, inventory, bed, and claims management systems,
as well as online appointment scheduling, HR management,
dedicated patient portals, and native applications in conjunction
with web applications. [13,14,15,16,17,18,25]

All of these services are offered on a more general management
scale and are catered towards much larger organizations that have
many more departments requiring many different functionalities.
Vision, however, do not comprise all of these departments and
therefore only require few of the functionalities provided by these
other systems. A big system with a large range of non-essential
features may result in a degree of impracticality and may reduce
user efficiency. [34] Furthermore, Vision’s monthly sedation clinic
is a unique service that none of the other systems on the market
currently cater for.

The main constraint with the paid systems is that they require
expensive licenses, which Vision, as an NPO, cannot afford. We
investigated the possibility of using an open-source system and
adding this functionality to it, but although most of the code is

componentized, there will be a steep learning curve in trying to
understand the system. Additionally, most of the forms did not
contain all the fields Vision need to capture for each patient,
therefore we would have to redesign the majority of the system,
from the front-end to the database. Additionally, in-house
development would allow for greater control over the system as
well as greater customization. Therefore, the decision was made to
develop the entire system in-house.

2.4 Ethical, professional and legal considerations

2.4.1 Professional considerations

Once the system is complete and deployed, it will be owned by
UCT and Vision Medical Suite. The long-term maintenance of the
application will become Vision’s responsibility; however, we have
ensured that all the code is fully documented to make it easily
understandable and easily maintainable for future developers. The
documentation can be found on the project website.

2.4.2 Ethical considerations

We received ethical clearance from the UCT Human Research
Ethics Committee before we conducted usability tests with real
users. To ensure ethical standards, users were required to give
signed consent before they participated in the study. Furthermore,
all tests were conducted over a video conference call to avoid the
risk of exposure to Covid-19. These tests were recorded, and all
information collected will be kept private so that the participant will
not be identified by name or by affiliation to an institution. All
audio and video recordings will be kept for no longer than a year.
Confidentiality and anonymity were maintained as pseudonyms
were used, and it was emphasized to participants that all data
entered should be fictitious. All meetings with the clients,
supervisor, and other team members were also all held over video
conference calls to avoid the risk of exposure to Covid-19.

Since some of the participants that were tested are health workers,
there was a potential ethical issue of taking their time during a
pandemic. We resolved this by ensuring that the tests were
conducted as efficiently as possible and to the convenience of the
workers when the active number of Covid-19 cases were low.

2.4.3 Legal considerations

The final application will deal with real, sensitive patient data.
Therefore, security was a priority in the design of the system in
order to comply with the Department of Health’s requirements
around patient data. This was achieved by incorporating
authentication, authorization, encryption and various other security
measures into the application, which ensured access control, data
security, and confidentiality.

The Protection of Personal Information (POPI) act was also taken
into consideration. This states how institutions should act when
storing and sharing an entity’s personal information, which ensures
accountability. We ensured that doctors are only allowed to view
the information of patients who are linked to them, and only the
admins are allowed to link a patient with a doctor. This ensures

access control and doctor-patient confidentiality. Information is
also encrypted when stored.

3 REQUIREMENT ANALYSIS

The requirements analysis process began in a meeting with the
stakeholder who verbally provided us with a scope of what the
functional and non-functional requirements of their desired system
are. This meeting was conducted over a video conference call to
prevent exposure to Covid-19. The stakeholder ran through a
similar system that is provided by the state, where he pointed out
what needs to be included in their desired system, as well as the
flaws and inefficiencies of the system demonstrated. These flaws
included unnecessary and unorganized inputs, complicated user
navigation, cluttered screens, and a poor UL. He left us responsible
for making improvements to the aforementioned inefficiencies.

He explained that the new system needs to consist of two parts. The
first part of the system is the general practice, which is the standard
practice where they provide their services on a daily basis. The
second part is the sedation clinic, which is run on a monthly basis
and aims to treat 50 to 100 patients in a single day.

3.1 Requirements/Features

The team compiled a list of all functional and non-functional
requirements by re-watching the meeting recording. A more
detailed list of the functional and non-functional requirements can
be found in Appendix A, however, this section highlights the main
requirements.

3.1.1 Functional requirements
The functional requirements will be divided up between the three
main parts to the system.

3.1.1.1 Admin Panel Functionalities

Admins should be able to register staff members and create login
details for them. The admin should also be able to add, edit, and
delete beneficiaries, hospitals, and sedation clinics. Admins should
also be able to control which staff members have access to which
patients (in order to comply with the POPI act).

3.1.1.2 Sedation clinic functionalities

Once an admin has created a clinic, hospital staff should be able to
schedule patient appointments on behalf of beneficiaries. On the
day of the clinics, the patients can be checked in when they arrive
at the hospital, and a staff member can then start their visit. Each
visit will consist of 5 different stages, where different information
is captured at each stage, and stored for future viewing at any given
time. The patient should be exited from the hospital once all stages
have been completed. Staff should also be able to view the patients
previous sedation visit records at any point in time. Voice to text is
also required for the procedure information. Staff members should
also be able to register new patients anytime.

3.1.1.3 General practice functionalities

Staff members should be able to view patients linked to them by
admins, and book appointments for them. They should also be able
to capture all relevant information about that patient during their
visit, which can be viewed in the future. All details including past
visit information, sedation clinics, appointments, patient, and staff
information should be able to be edited and deleted by those who
have permission. There should be voice-to-text functionality for
input fields which are likely to require a lot of text, and validation
should be implemented throughout.

3.1.2 Non-functional requirements:

Throughout the entire system, there should be authorization and
authentication protocols, patient details should be confidential,
there must be efficient retrieval of information, an intuitive and
easy to use UI/UX, and adequate security for a project of this
nature.

3.1.3 My responsibility

We split up the entire system according to its functionalities and
divided them up evenly between the three team members. In
dividing up the work we played to each other’s strengths and
previous development experience to ensure that the development
process will be as efficient as possible. The functionalities I was
responsible for were: Information Capture for the general practice
and sedation clinic, the UI/UX of the whole system, the editing of
all patient details and their visit information, the mobile
application, screen responsiveness for tablet devices, form
validation, error handling, feedback, voice-to-text functionality,
prototyping, and QA and testing.

3.1.4 Team member responsibilities

One member is responsible for the authentication and authorisation,
the database design and queries, as well as all the server side
functionality. The other member is responsible for the frontend
state management, security, the component structure, performance
enhancing techniques, the admin panel and managing sedation
clinic and general practice appointments.

3.2 Analysis

Once we had a list of all the requirements, we drew up a use case
diagram to specify the actions of the different actors of the system,
and to ensure we had a good high-level understanding of the main
requirements of the system. Access control is an important aspect
that necessitates consideration as the system needs to comply with
POPI, therefore we needed to be clear on which actors could
perform which actions. This was then sent to our supervisor who
approved of it. This can be found in Appendix B.

An ERD diagram was also developed for the database. This was to
illustrate the entities of the system and the relationship between
these entities. The group member responsible for the database was
responsible for this task, as found in Appendix C.

Meanwhile, I was developing a horizontal, evolutionary prototype
for the system. I had to ensure that the prototype captured all the

requirements and information that the stakeholder requested. The
first iteration focused on ensuring that it captures all the
requirements outlined in the meeting so that we do not waste time
in the development process trying to add in missing requirements.
The first horizontal prototype iteration was meant to be reviewed
by the stakeholder, however due to Covid-19, it was hard for him
to find time and thus only viewed the second iteration. The second
iteration of the prototype was focused on making the changes
suggested by a UI/UX designer, and demonstrating it to the
stakeholder.

4 SYSTEM DESIGN & IMPLEMENTATION

4.1 Design

4.1.1 Prototype and general UI/UX design

The design process began by breaking up the system design
between the database and server (found in Appendix D), the
structuring of system components (found in Appendix E), and the
prototype. As I was responsible for the UI/UX, it was my
responsibility to develop the prototype. This prototype was
developed using Adobe XD which is a specialized prototyping tool
for web and mobile applications. [35] 1 was responsible for
engineering ways in which we can overcome and improve upon the
aforementioned inefficiencies of the previously demonstrated
system. [used an agile development process in developing the
prototype. It began with the planning phase where I performed
extensive research into UI/UX best practices, as summarized in
section 2.2. I first created a low-fidelity wireframe sketch of the
system.

I then began the design of the next prototype iteration based on the
wireframe. The first thing I took into consideration was the colour
scheme for the system. As a result of the research performed in 2.2,
the colour scheme consisted of three different shades of blue, a grey
and white background, and pink for small accent details (since pink
is the colour of the VMS logo). The different shades of blue aimed
to create a visual hierarchy that organizes information and enhances
clarity. The white background adds space to the screen which
allows for the quick perception of text-based content. This colour
scheme has a high contrast which improves readability and
scannability. The next aspect which was redesigned was the
navigation bar. This needed to be redesigned from the demonstrated
system as its layout was unorganized and cluttered, since the
navigation bar was presented as tabs across the top of the page, with
inadequate feedback as to which tab was selected. This meant that
users on a smaller tablet screen had to scroll horizontally to see all
the tabs, which is inefficient. As a result, I moved the navigation
bar to the left of the screen with a blue background to stick with the
colour scheme. The navigation item selected was also highlighted
in white. With regards to the form design, all related inputs are
grouped, with each of their labels to their left. This conforms to
Gestalt's law of proximity. [9] The size of the input also relates to
the maximum length of the input as per the database limits to give
the user a hint as to what the maximum length of the input is (e.g.
an input field with a maximum length of 20 characters will have a

smaller height/width than an input field with a maximum of 50
characters). The stakeholder also requested for sliders to be
included in the forms. This could be considered an inefficient form
of input, thus all sliders will have an input field next to them to give
users an option to type in a number instead. Selected screens from
the first prototype can be found in Appendix F.

To ensure I was using the best UI/UX practices, I had a meeting
with a UI/UX designer in the industry who reviewed the prototype.
He informed me to move the labels above the inputs, and to move
the buttons to the bottom right of the form to enhance simplicity.
He also recommended that the navigation item styling should
change, and the tables should be redesigned and made a lot simpler.
He praised the colour scheme, the design of the validation feedback
and the patient profile.

I then began the second iteration of the prototype. I made the
selected navigation item in a lighter colour with a pink accent to
create a sleeker look, and to provide adequate feedback on which
item is selected. All the other changes were made as recommended
by the designer before the prototype was demonstrated to the client
in another meeting. He reviewed the prototype and informed me of
a few inputs that were missing. Those inputs were added and we
received approval to begin development as the stakeholder was
happy with the UI/UX. Selected screens of the final prototype can
be found in Appendix G.

The design of the mobile application began once the desktop web
application was approved. The mobile version went through a
similar agile development process. For the first iteration of the
prototype, the same colour scheme as the desktop was used. The
header was adapted to include a hamburger menu that toggles the
navigation bar. I had to redesign the tables as there was not enough
space on the screen for them. They were redesigned to show only
the three most important pieces of information at that phase in their
hospital visit due to the limited space in the tables. The layout of
the forms was also redesigned as the input fields all had to be in a
single column to fit on the screen. The validation and error handling
and feedback all remained the same. The buttons fit the entire width
of the form container to make them easily pressable.

I had another meeting with the same UI/UX designer I spoke to for
the desktop prototype. He was happy with the overall UI/UX design
especially with the effective ease of navigation that the hamburger
menu allows. He did however say I should redesign the tables, and
gave me a design that he recommended I replicate. I replicated that
design, and completed the second iteration of the prototype for the
mobile version, as found in Appendix H.

4.1.2 Information capture

On each stage in a patient visit, several inputs need to be filled in
and saved for future viewing to create patient medical records. With
the press of a button, all the data needs to be collected from the
form and sent to the server which will post the data to the relevant
tables in the database. The team member responsible for the server
and database specified the layout in which he wanted the data to be

sent to the server, which I had to reproduce. This conformed to best
practices and made his job easier as it required less formatting on
the server-side. I handled capturing the data on the front-end and
sending it to the server where it was then dealt with by another team
member.

POST and PUT requests were used as they are methods supported
by HTTP to make the server accept the data enclosed in these
requests. When sending these requests from the web app, it will
make use of Axios, an external React]S library, which is used to
make promise-based HTTP calls. Axios was used as it simplifies
HTTP requests and performs CRUD operations in a simple manner.
It also provides convenience as it performs automatic
transformations for JSON data. Axios also works very well with
Node.js and Express.js, and using these libraries and frameworks is
considered best practice for web applications of this nature. [11]

4.1.3 Form validation

It was imperative to correctly design and implement client-side
validation to protect against bad form data being posted to the
database. Every user input throughout the application should have
validation to protect against this. In designing the forms, every
input field is an object that has validation rules that need to be
satisfied. Many of these inputs have the same rules, therefore it was
important to create a reusable function to check the validation
properties. The validation checks that are made include, but are not
limited to, compulsory field checks, whether a field should only
contain alphabetical or numerical characters, maximum and
minimum value and length checks, if a date or time is valid and if
it is a valid email address. I used inline validation for the reasons
discussed in 2.2. If an input field is invalid, the input field will turn
red, and a custom error message will appear underneath stating
what is wrong with the entered input. This gives appropriate
feedback to the user as it shows exactly where the error occurs and
what the error is. If a user tries to submit the form while there are
still validation errors, the invalid fields will be highlighted in red
and a message will appear at the top of the form indicating to the
user that the indicated fields need to be fixed. The form will not
attempt to post until all validation errors are fixed.

4.1.4 Error Handling

A piece of software on this scale is likely not going to be bug-free
due to time limitations of not being able test every single way the
user interacts with the system. Therefore, sufficient error handling
needs to be put in place for the application to gracefully respond to
errors and exceptions. This is important for a good UX. The team
member who designed the server sends a status response code in
response to every request made from the web app to the server. The
error handler makes use of this to show a custom error message for
each type of status response code, which ensures that the right
message is shown to the user. The server provides 400, 401, 403,
404, and 500 client and server error responses, each of which the
error handler should respond to with a separate message to give the
user adequate feedback. The error message will be displayed
clearly as a modal which forces the user to complete a specific
action to ensure that they respond to the error correctly. This

conforms to Nielsen Norman group’s guidelines on error messages
being human-readable, polite, visible and it advises the user on
what to do. [10]

4.1.5 Responsiveness

The entire web application needs to be compatible with tablet
devices. I used CSS3 Media queries as it provides a dynamic way
to make the application responsive to different screen sizes. These
media queries targeted specific screen sizes, and uniquely styled
each component in the application based on the screen size. The
media queries created are compatible with tablets between the
screen-width of 768px and 1400px. This includes, but is not limited
to, the iPad, iPad Pro and Samsung Galaxy tablets. The main
purpose of this was to ensure that everything was displayed clearly
on the screen, and that information was not cluttered.

4.1.6 Voice to text

In designing the voice to text, the decision was made to use a free
Web Speech API that uses your built-in microphone to capture your
voice. Unlike other paid APIs, the Web API is limited to use on
Google Chrome only, but the saved costs massively outweigh its
inability for browser compatibility (as the paid versions charge an
amount for every second recorded, and every device can use
Chrome). Due to the zero budget of the project, this was the right
decision. The voice to text was only implemented for text areas
where excessive typing is expected, such as findings and clinician
notes. The voice to text prints out directly to the text area as the
user speaks into the microphone, therefore it does not need to store
the voice note in the database, thus saving space. All mobile and
tablet devices have voice to text functionality built into their
keyboards; therefore, this was only necessary for the desktop
version of the web application.

4.2 System development and implementation

4.2.1 Approach

We followed an agile development process in developing the
system. The agile development process was beneficial to our team
as we did not have experience in developing a system of this size,
therefore this approach allowed for change in terms of features and
algorithms used. Furthermore, since we were all working on
different parts of the same system, we needed to be regularly
merging our sections to ensure that we could test that they worked
in conjunction with the other team members' parts. We used sprints
which lasted 2 weeks each, and the tasks set out for each sprint were
managed on Jira, an agile software development tool. This helped
us stay organized and motivated by setting goals for each sprint. In
order to ensure that all team members were held accountable for
their actions and that we communicated effectively, the team had
daily stand-up meetings. In these meetings, we discussed what we
did the previous day, any problems that arose and what we planned
to do that day. We used Slack to communicate with each other
about anything to do with the project.

4.2.2 System architecture

The front-end was developed using React.JS which is an open-
source Javascript library for building UI components and
developing single-page applications. React.js was used as it
provides a Virtual DOM where all changes are stored. Therefore,
once a change is committed, the Virtual DOM is compared against
the real DOM, and only the related component is updated. This
results in fewer page re-renders, thus improving application
performance. [3] This is important in a Hospital management
system as staff often find themselves in time-critical situations.
Furthermore, all team members had experience using React, and
due to time constraints, it would not have been beneficial to attempt
to learn a new language in the short space of time we had. The state
of the application was managed using a library called Redux, which
was set up by another team member. This provided us with a central
store for the state of the entire application, and allowed the state of
all data to be accessible throughout the application.

We used a Node.js application server. This was used in conjunction
with the Express.js framework which allowed us to build APIs,
handle data updates from the front-end, and build a scalable
network application that can process multiple simultaneous user
requests. We used Node because React code can be executed
directly in the Node.js environment, and the React DOM has
components that are specifically designed to work with Node.js to
reduce the lines of code and make server-side rendering easier
when compared to other backend alternatives. [7] The system will
be hosted on UCT servers.

We used a relational database run on a MySQL server. This was
appropriate for our system as it relies heavily on complex
relationships, which relational databases are built for. For example,
for each patient visit, a visit instance will be created, which has a
many to many relationships with the patient table. Any other
information to be captured during the visit will be contained in its
appropriate table, which has a one to one relationship with the visit
table.

The frontend and backend work together as follows: The front end
sends HTTP requests using Axios, which the webserver processes.
It then sends these requests to the application server. The logic
developed in the server then determines what information it should
request from the database [22, 23]. This logic is the API
(Application Programming Interface) which defines different
routes that will be called from the frontend. These routes each
represent a different action that makes requests to the database to
create, remove, update, or delete information. This data will then
be returned to the frontend where it will be managed and dealt with
to present to the user. JSON will be used as the standardized format
to interchange data between the client and the server. This API will
follow a REST architecture which means that any interaction with
the API requires that all information needed to perform a specific
task must be provided. This increases the performance and
scalability of the server as it allows the server to remain stateless.
[24]

4.2.3 Functionality Implementation

423.1 UI'UX

The prototype was replicated in the structuring of the web
application pages, before moving on to structuring the forms and
starting the information capturing. The forms, along with the rest
of the Ul was developed using JavaScript, HTML, and CSS3
Modules. We chose to use CSS3 Modules as the styles are scoped
locally so that they do not leak into other components. The CSS
was loaded into Webpack, which builds the module and allows for
its use throughout the application. A module was created for every
component and container, and the relevant module file was
imported inside the target components.

Feedback is also important for a good UX as it informs the user of
the success of their actions. The feedback was implemented using
a reusable modal class that had its state saved in the central redux
store. When a user performs an action, the server responds with a
status code indicating if it is successful. If it is successful, it sets the
state of the modal in redux to true, which allows it to pop up on the
screen. The feedback is toggled back to false after 3 seconds, which
is adequate time for the user to view the message. All the screens
of the final system can be found in Appendix I.

There are also confirmation dialogues for whenever data is added,
edited, or deleted to avoid user errors. The state of these dialogues
are stored in the local state and are triggered on button click, once
all validation checks have been completed.

4.2.3.2 Information Capture

Each input field is stored in an object, with its current value as part
of that object. As users type in a text field, this value gets instantly
updated using a custom handler function which I created. When the
button to submit the form is pressed, and all the validation checks
have passed, the information capture process begins. When the
form is submitted, using Axios, it fires an action that sends a POST
or PUT request to the Node.js server, and Express.js saves the data
in JSON format in the database. When the promise resolves, we get
the JSON data, and another action calls the reducer function and
saves the data in the Redux store so it can change the Ul state which
allows the user to see the data that was posted. Another team
member was responsible for the server correctly handling the data
and posting it to the database.

4.2.3.3 Form Validation

Validation checks are all contained in a utility class that is imported
by every form. As mentioned in the design, each input field is an
object stored in the local state which has a list of validation rules it
needs to satisfy for the input to be valid. This object also contains
‘valid’ and ‘errorMessage’ properties. For every keystroke which
changes the value of the input field, the value and the list of
validation properties of that input get sent as parameters to a
function in a utility class. This function iterates through each
validation rule and tests the value of the input against a regex
pattern to check if the value satisfies that property. If it does not
satisfy the property, it sets the ‘errorMessage’ property of that
object to a custom error message based on the failed property; and
sets the ‘valid’ to false. This valid property and the error message

then gets passed as props to the Input class where the input field is
updated based on the value of ‘valid’. If valid is false, then the CSS
class will dynamically change which will highlight the input field
in red, and an error message will appear below this field stating
exactly what is wrong with the entered text. When the user fixes the
error, the checkValidity function will set valid to true, and this
value will be passed to the Input class where it will update the CSS
to change the input field back to its normal display. If the user
presses the button to save the form details, it will check the local
state and see if there are any invalid fields. If there is, an error
message will appear indicating what fields need to be filled in or
changed, otherwise, the information capture process will begin.

4.2.3.4 Error Handling

To ensure error handling, I created a higher-order component that
wrapped the app class, which is the main component. This higher-
order component uses a response interceptor which is a method that
is triggered before the main method and is called before the promise
is completed and before data is received by the callback. The
interceptor also makes use of Axios. In this higher-order
component, this interceptor receives a status response code which
is sent from the server to the web application with every single
request. Based on the status request code, an error message specific
to that request will be saved in the local state and is passed to a
reusable Modal component which appears when there is an error
message present in the state. For example, a 401-status response
gives an error message stating that the user has been logged out,
and it redirects them to the login page. This allows the web
application to respond to errors gracefully. By wrapping the app
container class with this higher-order component, it allowed the
component to react to errors regardless of where you are in the
application. This error handler only catches runtime errors.

4.2.3.5 Mobile application and Screen Responsiveness

The mobile and tablet applications were both created using
Javascript, HTML, CSS3, and Media queries. For the mobile, the
entire application had to be redesigned and resized to make it
compatible with mobile devices. This was achieved using media
queries that restyled all components when it picked up a screen size
which had a width below 480px. In developing the mobile
application, the mobile prototype was replicated as it had received
approval from a UI/UX developer in the industry. Therefore, I was
happy with all of the design decisions made, and they were all
justified in 4.1.2.

For the tablet version of the application, no prototype was
developed due to time constraints. Therefore, I used my previous
HCI knowledge to redesign the various aspects which did not fit on
the screen. When the screen size gets smaller, the width of the
navigation bar gets smaller which gives more space for the all tables
and forms. The tables also had to be fully responsive based on the
screen size to ensure that it was still presented clearly. This was
done by setting a priority level to each column of every table, which
allowed certain columns to automatically be hidden based on the
screen size and their priority level. The layout of the forms also
becomes a single column when the screen gets too small. It was

also important that the whole app was touch-friendly. To achieve
this, the buttons were made slightly bigger as using your fingers to
touch items are far less precise than using a curser. I also took
advantage of the built-in speech to text of tablet keyboards which
allowed me to remove the voice to text buttons. The application’s
ability to be used on any device, as long as it has Chrome
downloaded, allows it to be portable.

4.2.3.6 Voice to text

The voice to text functionality uses a Web API. This API involves
receiving speech through the device’s microphone, which is then
checked against grammars in the English (United States) language.
Once a word or phrase is successfully recognized by the grammar,
it is returned as a text string. This is all managed from a
SpeechRecognition main controller interface which sends the audio
to Google’s servers to perform the transcription (This is why it is
online supported in Google Chrome). When the microphone button
is pressed, I send a method to toggle the speech recognition
controller which turns on the mic and begins to listen to the user.
Then using a custom handler function, it adds the transcription to
the value of the input field, then updates the value in the input’s
object state, and saves it in the local store ready for it to be posted
to the database.

5 Testing

To test the system, we conducted usability tests at two different
phases of our agile development process. As a result of Covid-19,
all the tests were conducted over a video conference call to avoid
the risk of exposure to the virus. The users all received a set of tasks
that they were told to complete, while the team member conducting
the test took field notes on the interactions and behaviour
demonstrated by the user while they used the system. This was to
measure the effectiveness in the design of the UI/UX. The list of
tasks can be found in Appendix J. The user was told to use fictitious
data throughout the test, and they were required to read through and
sign a consent form (approved by the UCT Ethics Committee) in
order to participate in the test and allow for it to be recorded.
Usability tests were important as the design needs to allow medical
practitioners to complete tasks quickly and with ease, as they often
find themselves in time-critical situations. Unit tests were also
performed to test if the functional requirements were working
correctly.

Initially, we also planned on conducting an acceptance test that
involved deploying the system in a VMS clinic to test and monitor
it. However, due to Covid-19, there have not been any clinics,
hence we were unable to perform the acceptance test. As a result,
we have not been able to test the system in a busy environment with
many users interacting with it simultaneously.

5.2 Phase 1 Usability tests

The first phase of tests started once we had developed all the
functionality of the system. We conducted six cognitive
walkthroughs with people who have a computer science

background. We decided not to test any medical practitioners as we
found that it was unethical to take their time during this period
where the number of COVID cases is rising rapidly. We wanted to
test the UI/UX of the system and ensure it was learnable and tasks
were easy to complete.

5.3 Phase 2 Usability tests

The second phase of tests started once we were close to finalizing
the U/UX and all the problems identified in phase 1 were fixed.
We conducted four cognitive walkthroughs with a mix of people in
the medical industry and people with a computer science
background. We used medical practitioners in this phase of testing
because South Africa had recently entered phase 1 of the lockdown,
therefore it was an acceptable period to begin testing them as the
number of cases of COVID had slowed down. These tests aimed to
test the UI/UX of the system and ensure it was learnable and tasks
were easy to complete.

As part of the phase 2 tests, we performed a final demo for the
stakeholder.

5.4 Unit tests

We performed unit tests using Jest, a JavaScript testing framework.
We used Jest because it is easy to setup in React, and its
parallelization allows for very fast tests. [32] On the frontend we
performed 76 unit tests which covered all of the functional
requirements of this system. Our aim of these tests was to test the
effect of the various action types on different instances of the
central store. On the backend, Jest was also used to test various
endpoints and their effect on the database.

6 Results and Findings
6.1 Phase 1 Usability tests

The feedback will be split up between the three main sections:

6.1.1 Admin panel

Registering staff, adding/editing/deleting staff details, sedation
clinics, and dynamic data were all easily accomplished and were
found to have a very simple, intuitive, and easily navigable UI/UX.
Users also appreciated the simplicity of the navigation bar.
However, an issue in the admin panel is that there was a lack of
feedback on actions that left users confused as to whether or not
their task was successful. We found that it was also unclear about
how to link patients to corresponding doctors.

6.1.2 Sedation clinic

In the sedation clinic, we found that the input field labels were
sometimes ambiguous which confused the user. Users also found
the size of the buttons were too small on tablet and mobile devices.
For some of the inputs, we gave users multiple ways of inputting
the information which turned out to be confusing as they did not
know which way to use it. It was also not immediately apparent to
users where to edit the capacity of the clinics. This is interesting to

note as the UI/UX designer approved of the design of this feature.
However, on the mobile version, users found it intuitive to change
the capacity. Furthermore, the users found it easy to book and edit
appointments, check-in patients, and start their visit to the hospital.
Three users also noted that they liked that they were able to do all
of this on a single page. Two users did however mention that there
should be confirmation dialogues before deleting and editing
appointments. Users also found it very intuitive to move patients
between the different phases of their hospital visit. Four users
mentioned that the validation was implemented effectively and it
helped them clearly see where their mistakes were. Six users added
that the feedback modals were also very helpful, and they
appreciated the simplicity of the navigation bar.

6.1.3 General Practice

The general practice had largely positive feedback. Users liked the
calendar and the ease of booking appointments. In particular, they
appreciated the ability to drag-and-drop to move appointments.
Users also liked the feedback on successful actions. Two users did
however mention that the feedback disappeared too quickly.

6.1.4 Resulting changes from phase 1 testing

We simplified the process of linking the patients to the staff by
making a list of staff on the side of the screen, where you just click
on a staff member and press only two buttons to add a patient.
Feedback was also added to all actions performed in the admin
panel. This feedback will be presented in the same way as the
sedation clinic and general practice as we received largely positive
responses on the feedback. The input fields that were unclearly
labelled were renamed and the size of the buttons on mobile and
tablets were all increased by 4px. For the inputs which allowed
users multiple options to add data, we have removed the second
option and given a hint on how to input the data. This excludes the
sliders as they were specifically requested by the client. The format
in which the clinic capacity can be changed was also redesigned
and moved to the top of the appointments table to make it more
intuitive. Confirmation dialogues were added for all the editing,
adding, or deleting of information. The feedback was increased to
last an extra second, and was made consistent throughout.

6.2 Phase 2 Usability tests

After the changes described in 6.1.4 were implemented, there was
only positive feedback in phase 2 of the usability tests. We found
the users to be very happy with the UI/UX of the system, with one
user quoted saying it was a ‘very clever, modern design’. All
actions were found to be very intuitive and navigation was found to
be effortless. Another user was quoted saying that the application
was ‘visually appealing, engaging and I cannot fault it.”

We also performed a final demo for the stakeholder. The
stakeholder was extremely happy with the system and said it
exceeded his expectations. He was happy with the UI/UX of the
system, and it met the original functional requirements he set for
us. He has since contacted the Vision board and arranged for us to

do a demo for them before deploying it into the hospital for the
acceptance test.

6.3 Unit tests

All of the tests for the frontend and backend passed. This provided
adequate validation that our functionalities were working as they
should be.

On the frontend, we tested pure functions that take in the previous
state and an action, and return the next state. The pure functions
were easy to test as they produce no side effects and does not rely
on external state. It was important to test these functions as this is
where the business logic happens and where new application state
is formed based on the API or internal responses. [36] The results
of these tests ensured that there were no issues related to global
application state. The results of the testing can be found in
Appendix K.

On the backend, each unit test tests for a particular API endpoint,
which will make the call to the database and the response status
code will be compared with what is expected and if they match, the
test is successful. This test both the endpoint as well as database to
see if it's working as expected, and if the correct data is being sent.
All core endpoints were tested, and their results can be found in
Appendix L.

7 Conclusions

Due to Covid-19, we were unable to deploy the system in a real
clinic to conduct an acceptance test. However, we received very
positive feedback in phase 2 of the usability tests and the
stakeholder stated that the UI/UX exceeded his expectations. From
these responses, we were able to conclude that the aim of creating
an intuitive and easy to use system that encapsulated all of the
requirements, was met. Moreover, as the unit testing shows, all
functional requirements are working correctly, with many
additional edge cases taken into account. This verifies that the
system is reliable and works correctly. The non-functional
requirements were also all met. The other team members ensured
adequate measures were put in place to ensure that the application
is secure and various performance enhancing techniques were used
to ensure that the application performance is fast. That being said,
all the original aims set out were met.

It is expected that this system will help Vision manage their clinics
and associated general practices more effectively and efficiently.
Their processes will become seamless, removing the effort of
manually recording and managing operations. It will enhance the
staff’s ability to coordinate care, streamline the search of patient
files, and increase data security. This system could potentially
enable Vision to accommodate more patients in their once a month
clinic, as well as allow general practices to see more patients from
Vision’s affiliated beneficiaries. People in the beneficiaries who are
unable to, or find it difficult, to receive healthcare will now have
access to well run, organised clinics and general practices.

Ultimately, this will allow them to make a bigger impact on local
communities.

In terms of future extensions to this project, a new dashboard could
be integrated to give daily, weekly or monthly reports on the
average waiting times between different phases of the hospital. The
dashboard could also show hospital visit trends to allow the
directors to allocate more staff members to clinics at different times
of the day/year depending on the identified trends.

When reflecting upon the entire project, I believe that our agile
development process, our effective communication through daily
stand-up meetings and willingness to help one another is the reason
why we were able to exceed in producing a fully functional,
visually appealing system. Based on my responsibilities in this
project, as a recommendation to others trying to replicate this
system, I would say that talking to a UI/UX developer during the
prototyping phase is invaluable and saves a lot of time in the
development as few changes to the UI/UX will have to be made. If
they use React to develop the web application, Axios should be to
send HTTP requests as it provides automatic conversion to JSON,
making information capturing much easier. I would also
recommend using CSS Modules for styling and for making the
application responsive for both mobile and tablet devices. CSS is
easy to work with and allows for efficiency in design and updates
due to its media query functionalities. [12]

8 Acknowledgements

I want to thank my team members for their unbelievable
commitment to the project and their consistent willingness to assist
each other. I would also like to thank our supervisor, Aslam Safla,
for his guidance and help throughout the project. I would like to
thank Melissa Densmore for all her feedback and time taken to help
us. Finally I would like to thank Dr Moosa Parak for providing us
with the opportunity to develop this system and do our part in
helping them care for the vulnerable communities.

9 References

[1] David Avison and Terry Young. 2007. Time to rethink healthcare and ICT?.
Communications of the ACM 50, 6, 69-74. DOLI:
https://www.researchgate.net/publication/220421651_Time_to_Rethink Health
care_and ICT

[2] Alexander Mathioudaki, Ilona Rousalova, Ane Gagnat, Neil Saad and Georgia
Hardavella. 2016. How to keep good clinical records. Breathe (Sheff) 12, 4, 369-373.
DOI: https://www.ncbi.nlm.nih.gov/pubmed/28210323

[3] React. 2020. Virtual DOM and Internals. Retrieved September 21, 2020 from
https://reactjs.org/docs/faq-internals.html

[4] N. Kolenda. 2016. The Psychology of User Experience. Retrieved April 29, 2020
from https://www.nickkolenda.com/pdf/usability-tactics.pdf

[5] B. Shneiderman. 1987. Designing the User Interface: Strategies for Effective
Human-Computer Interaction

[6] B. Armour. 2018. 5 Key Benefits of Native Mobile App Development. (August
2018). Retrieved April 25, 2020 from https://clearbridgemobile.com/benefits- of-
native-mobile-app-development/

[7] BezKoder. 2020. React+Node.js+Express + MySQL example: Build a CRUD
app. (Septmeber 2020) Retrieved September 7, 2020.

[8] Luke Wroblewski. 2009. Inline Validation in Web Forms. (September 2009).
Retrieved Spetember 8, 2020 from https://alistapart.com/article/inline-validation-in-
web-forms/

[9] Interaction Design Foundation. 2019. Gestalt Principles. Retrieved September 9,
2020 from https://www.interaction-design.org/literature/topics/gestalt-principles

[10] UXPin. 2020. Design Consistency Guide: Best Practices for Ul and UX
Designers. (April 2020). Retrieved April 29, 2020 from
https://www.uxpin.com/studio/blog/guide-design-consistency-best-practices-ui- ux-
designers/

[11] Janelle Wong. 2017. Why Use Axios in Your Next App. Retrieved April 30,
2020 from https://medium.com/@janelle.wg/why-use-axios-in-your-next-app-
c44ad3508e93#:~:text=By%20using%20axios%2C%20it%20simplifies,automatic%
20transformations%20for%20JSON%20data.

[12] Purely Branded. 2017. Why Use CSS in Website Design. Retrieved September
18, 2020 from https://www.purelybranded.com/notes/why-use-css-in-website-design/

[13] Adroit Infosystems. eHospital Systems. Retrieved from
https://www.adroitinfosystems.com/products/ehospital -systems

[14] Sapphire. Sapphire Hospital Management System. Retrieved from
https://www.sapphirehms.com/

[15] Pinaacle, "MedStar Hospital Management and Information System," Available:
http://medstarhis.com/docs/Medstar-Brochure.pdf. [Accessed 6 May 2020].

[16] AthenaHealth, "Home Page," 2020. Available: https://www.athenahealth.com/.
[Accessed 6 May 2020].

[17] TeamDesk. 2020. Medical Practice Manager database. Retrieved May 7, 2020
from https://www.teamdesk.net/

[18] OpenMRS. 2020. OpenMRS. Retrieved July 11, 2020 from
https://github.com/openmrs

[19] Ramya Shankar. 2020. JSON vs XML. (April 2020). Retrieved May 2, 2020
from https://hackr.io/blog/json-vs-xml

[20] Munir Sabanovié¢, Muzafer H. Saracevic and Emrus Azizovic. 2016.
Comparative analysis of AMF, JSON and XML technologies for data transfer
between the server and the client. Periodicals of engineering and natural sciences, 1-
7. Retrieved from https://www.semanticscholar.org/paper/Comparative- analysis-of-
AMF%2C-JSON-and-XML-for-data-Saracevic-
%C5%A0abanovi%C4%87/ab9ff25deafecbd78132136047259373a2f4a3al

[21] RestfulAPIL 2019. JSON vs XML. Retrieved May 4, 2020 from
https://restfulapi.net/json-vs-xml/

[22] IBM. 2020. Introduction: Application servers. Retrieved April 24, 2020 from
https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.we b
s phere.base.doc/ae/welc_servers.html

[23] NGINX. n.d. NGINX: What Is an Application Server vs. a Web Server?
Retrieved April 25, 2020 from
https://www.nginx.com/resources/glossary/application-server-vs-web-
server/

[24] Roy Fielding. 2000. Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. Dissertation. University of California, Irvine.

[25] Andy Pardue, Derek Veit, Pete Johanson, Rob Kilian. 2020. OpenVista®.
Retrieved July 11 from https://sourceforge.net/projects/openvista/

[26] Web Designer Hub. 2017. Benefits and disadvantages of using the hamburger
menu in responsive websites. (January 2017). Retrieved April 29, 2020 from
https://www.webdesignerhub.com/hamburger-menu/

[27] Tubik Studio. 2017. Case Study: Health Care App. UI for Doctors. (March
2017). Retrieved 30 April 2020 from https://uxplanet.org/case-study-health- care-
app-ui-for-doctors-826741027950

[28] Johanna Silvennoinen, Marlene Vogel, Sari Kujala. 2014. Experiencing Visual
Usability and Aesthetics in Two Mobile Application Contexts. Journal of usability
studies 10, 1, 57-58. DOI:
https://www.researchgate.net/publication/268978666 Experiencing Visual Us
ability_and_Aesthetics_in_Two_Mobile_Application_Contexts

[29] SteelKiwi inc. 2017. How to design a great medical app. (December 2017).
Retrieved 30 April 2020 from https://medium.muz.li/how-to-design-a-great- medical-
app-c3079f1390e7

[30] Nemanja Banjanin. 2019. UI Design Best Practices for Better Scannability.
(February 2019). Retrieved April 29, 2020 from
https://www.toptal.com/designers/web/ui-design-best-practices

[31] Ho Tran Tony. 2019. Inside Design. (March 2019). Retrieved April 29, 2020
from https://www.invisionapp.com/inside-design/pros-and-cons-of-hamburger-
menus/

[32] Gigi Sayfan. 2018. 8 Things that make Jest the best React Testing Framework.
Retrieved September 22, 2020 from https://code.tutsplus.com/tutorials/8-things-that-
make-jest-the-best-react-testing-framework--cms-30534

[33] Tubik Studio. 2017. Case Study: Health Care App. UI for Doctors. (March
2017). Retrieved 30 April 2020 from https://uxplanet.org/case-study-health- care-
app-ui-for-doctors-826741027950

[34] Federico Botella, Juan P. Moreno, Antonio Pefialver. 2015. Comparing the
efficiency of performing complex tasks with a tablet and a smartphone. DOI:
http://dx.doi.org/10.15446/dyna.v82n193.53492

[35] Adobe. 2020. Adobe XD. Retrieved Septmeber 30, 2020 from
https://www.adobe.com/aftica/products/xd.html

[36] Alex Bachuk. 2017. Testing Redux Reducers with Jest. Retrieved September 30,
2020 from https://medium.com/@netxm/testing-redux-reducers-with-jest-
6653abbfe3el

Appendix A

Functional Requirements:

Based on the requirements analysis meeting, the following functional requirements were outlined:

A system is required for Vision Medical Suite, an NPO that provides free medical and dental care. The system
will be used to manage the staff, patients and overall processes and operations involved. The system will be
made up of a web application which incorporates the following requirements:

Users should have the option to login or register (if permission received)
A pool of all patients that are registered in the system will be displayed
The user should have the option to select the sedation clinic or a general practice

[Sedation clinic is selected]:

Users should be able to register patients

Users should be able to book patients for the clinics

Users should be able to cancel bookings and push bookings forward

A scheduling tool to be implemented within the booking system

Upon arrival of the patient, the user (receptionist) should have the option to select patient from booking
list, and thereafter remove the patient from such list

Mandatory requirement for a user to timestamp event, capture arrival information, vital signs and
screening information

The user should then move the patient to the triage waiting list

A list of patients who are waiting for triage should be displayed, along with their information, reason
for visit and waiting time

The user should then be able to capture all necessary screening information for each patient on the list
After all required screening information is captured, the user should then have the option to move the
patient to the next stage. The timestamp will be automatically captured.

The patient should then be moved to the theatre waiting list

A list of patients who are waiting for theatre should be displayed, along with their information and
waiting time

The user should be able to remove the patient from the waiting list, when ready for theatre. Timestamp
will be captured.

The user should be able to edit the patient and fill in the necessary information regarding the procedure
This section should contain four capture points to tag the clinicians

Clinicians should be able to capture notes about the procedure. The user should have the ability to
either convert voice notes into text using an API or type out the notes onto a device. Either way, all
pieces of information will be stored in the database and be available to the user on request.

User should be able to capture ICD10 codes associated with the procedure

Option to search through the database containing all ICD10 codes, using an existing API

User will be able to select ICD10 codes which get added to the list in the patient record

The user should then be able to move the patient to the disposition waiting list. Timestamp captured

A list of patients who are waiting for disposition should be displayed, along with their information and
waiting time

The user should be able to fill in disposal information, tag his/her name, input the time the patient will
spend in the recovery area and complete full vital signs of the patient

The user should then be able to move the patient to the exit waiting list

A list of patients who are waiting for exit should be displayed, along with their information and waiting
time

The user should be able to fill in where the patient will go after

Allow for adding and changing facilities
The user should be able to remove the patient from the exit waiting list. Timestamp captured

[End of sedation clinic process]

General practice system should include entry and vital signs

A user management system should be implemented to control access and permissions

Staff should be given permission from a higher level user before getting access to the system and
viewing information in another sector

Prompts should be displayed to update previous information of patients

Admin should have access to everything and have the ability to grant permissions

Screenshots should be blocked

Saved credentials on browser should be blocked

No two users should be able to open a specific patient’s record simultaneously. A warning should be
given if the record is already opened

Reports should be generated on various activities

e These reports should be visualised

Non-functional requirements:

Ensuring privacy and confidentiality with respect to clinical notes written by staff members.
Privacy and confidentiality of patient’s records is essential. The records can only be accessed
by authorised staff members.

Security of the system will be enforced through the use of login details.

When a user signs into the system, a unique token id will be created for that session. This
token will be used to access certain information within the database. This token id will expire
after a set expiration time. If the user is still using the application, the token id will be
refreshed. [token authentication]

e The user’s user id will be used to help access information only authorised for that user. This
user id will be checked with every request that is made by the user.

e The user will be logged out of the system after a certain amount of time has elapsed - this falls
under the expiration time that is set for the token. Unless they are still using the application.
Fast retrieval of information from the database at all times is required.

Ability to either convert voice notes into text using an API or typing out the notes onto a
device or taking a picture of the device of the notes written out by the user. Either way, all
pieces of information will be stored in the database and be available to the user on request.

e UI/UX of the application needs to be of a high standard to ensure that the app is user friendly
and intuitive. The application needs to be easy to use in high-stress situations. Information
and actions need to be displayed clearly and accurately.

e HTTPS connection is essential for an encrypted secure connection. This will help prevent
malicious attacks on information that may be travelling to and from the website and the user’s
browser.

e Users are error-prone and thus modal/pop-ups are required to confirm the intent of the actions
that the user might make. For example, deleting a patient or moving the patient from one area
to another. This will help mitigate unwanted side effects.

e Providing the user with the tools to edit actions.

e The system needs to be both accurate and reliable - in terms of both the information that is
provided as well as the functionality. The user should be able to retrieve and post information
to the database.

e The application needs to be compatible with all devices. These include both desktop and
mobile devices.

Appendi

Admin

&
(Receptionist)

Receive Register
Request

Receive Permission
Request

Add/Edit Institution
Information

Edit Patient Information

<<extend>>
Schedule
<<include>>
3

Register Patient

<Authentication system>

+(AcceptiDeny Request

<<include>>

AcceptiDeny
Permission

<<extend>>

‘ Register

Capture disposition
information
o <<include>>

Capture exit

Cancel Appointment

Edit Appointment

<<include>>
nclu Enter in valid account
information

request

<<include>>

<<extend>> < >
extend Capture Screening g, ~<nClude>>
information

<<include>>

Push to clinician phase

Push to Triage Phase

Records System

R
/ Patient

<<include>>

[Enter in procedural notes)

View procedural notes

Move

atients fro
Clinfcian phase

ian phase

Edit patient information

e

Request access to
patients’ records

<<include>>
oo, —-sseee{ AddIC10 codes

Sedation Clinic

system>

Chad Piha
Appendix B: Use Case

1 . i atients v v m findings v
Appendix C: ERD Diagram : : e) patients_staff v] staff v] treatments find
j sedation_appointments V id INT = id INT gp_visit_id INT gp_visit_id INT
. patient_id INT -
4T identifier VARCHAR(20) 4‘——% <taff id INT username VARCHAR(30) assessment VARCHAR(200) BP DOUBLE
¥ patient_id INT first_name VARCHAR(30) - S fullname VARCHAR(S0) treatment VARCHAR(200) pulse DOUBLE
date_booked DATE | = @ — RR DOUBLE
I H- last_name VARCHAR(30) staff_role VARCHAR(20) | 2
reason VARCHAR(60 ; +rFr—-——————— -
(60) : date_of_birth DATE I contact.number VARCHAR(LS) [— — — — — — — | HB DOUBLE
scheduled TINYINT(1) B|l—————
() >l gender VARCHAR(10) : email VARCHAR(40) | temperature DOUBLE
riority_level INT . DOUBLE
priority. contact_number VARCHAR(15) e _ r —— — ——— — H| < practice VARCHAR(40) : >
arrival_time TIME . X
imeTME- < email VARCHAR(40) : : : qualification VARCHAR(40) | 02_saturation DOUBLE
visit_started TINYINT(1 | ; | } t TINYINT(1
st ® I next_of_kin VARCHAR(50) I | I user_password CHAR(60) I }< < pregnan 1)
@ clinic_id INT I next_of_kin_contact VARCHAR(15) L : : : > | GCS_e DOUBLE
> : beneficiary_id INT | | | 4 m K_ : v GCS_m DOUBLE
: visi
_] dynamic_data ¥ Yy 1 > : : : I 9p_visits GCS_v DOUBLE
—- - | id INT U
id INT ;r 3 beneficiaries ¥ # | | | | ! urine_dipstix VARCHAR(60)
i ini tient_id INT .
name VARCHAR(40)] sedation_clinics ¥ id INT | : : : d ¥ patient! general_findings VARCHAR(200)
taff_id INT I
type VARCHAR(30) id INT natme VARCHAR(40) : I | | _: __________ < S " systematic_findings VARCHAR(200)
I I visit_date DATE "
> clinic_date DATE y | | - x_ray_findings VARCHAR(200)
= | VARCHAR(40 | - — =
emal (40) |] procedures_staff v | ' A location VARCHAR(60) .
complete TINYINT(1) > | X | ~ ECG_findings VARCHAR(200)
capacity INT | i INT I | j gp_appointments ¥ presentation VARCHAR(60) >
s | % procedure_id INT : | id INT >
location VARCHAR(40) |) L | o
> |m—————————— o > staff_id INT |———— I —— patient_id INT T
= : notes_role VARCHAR(20) : @ staff_id INT | | referrals v
:’ waiting_for_triage ¥ | I notes VARCHAR(500) | appointment_date DATE : gp_visit_id INT
L > i
‘V'S't_'d INT F‘li : : re — < start_time VARCHAR(30) | referring_clinic VARCHAR(50)
> b—— 1 | ¥ end_time VARCHAR(30) | medical_history v doctor_cpt VARCHAR(50)
: : 1 date_booked DATE patient_id INT to_hospital VARCHAR(50)
)
) waiting_for_theatre ¥ /_{\ /_{\ = . T v scheduled TINYINT(1) hypt TINYINT(1) K< . accepting. doc_dept VARCHAR(S0)
procedures i
visit_id INT N) sedation visits = T visit_started TINYINT(1) TB TINYINT(1) ambulance_ref VARCHAR(40)
_! visit_i
> m id INT tart time TIME reason VARCHAR(60) asthma TINYINT(1) reason_for_referral VARCHAR(200)
o i start_time > "
» oatient i@ INT H epilepsy TINYINT(1) presenting_complaint VARCHAR(200)
:] S H patient_i hand_over_to VARCHAR(50) COPD TINYINT(1) <
In_theatre ion VARCHAR icati }
‘) . presentation CHAR(60) . complications VARCHAR(200) T DM TINVINT(1)
visit_id INT %{—l o tation_datails VARCHAR(200) | i
presentation_datails (200) end_time TIME :l procedures_icd10_codes ¥ other VARCHAR(50)
> H current_location VARCHAR(30) > - = ke TINVINT(1
o H procedure_id INT Smoke @ j medication v
@ clinic_id INT
T H icd10_id INT ETOH TINYINT(1) id INT
> |
waiting_for_disposition ¥
| m g_for_disp . code_level VARCHAR(15) drugs TINYINT(1) date_given DATE
visit_id INT UM + o
: :l exits v > chronic_medication VARCHAR(200) medication VARCHAR(100)
>
visit_id INT dose DOUBLE
1
* exit_to VARCHAR(40) » route VARCHAR(40)
o]
:l waiting_for_exit Vv hospital_transferred VARCHAR(40) time_ordered TIME
\ visit_id INT exit_time TIME doctor VARCHAR(50)
> > issued_by VARCHAR(50)
s time_given TIME
j times v :I icd10_codes v
id INT ¥ gp_visit_id INT
visit_id INT
B | screenings M _] additional_screenings ¥ "] disposals v icd10_code VARCHAR(10) >
waiting_for_triage TIME i<t id INT P -
VISIt_I visit_id INT PP it
waiting_for_theatre TIME ity VARGHAR(EO) visit_id INT code_description VARCHAR(100)
mobili medication VARCHAR(200 i >
in_theatre TIME RR DOUBLE (200) mobility VARCHAR(40)
allergies VARCHAR(200
waiting_for_disposition TIME 9 (200) RR DOUBLE :I . v
HR DOUBLE weight DOUBLE HR DOUBLE admin
waiting_for_exit TIME .
SBP DOUBLE height DOUBLE id INT
active TINYINT(1) DBP DOUBLE 58P DOUBLE username VARCHAR(30)
> Ooul BHCG VARCHAR(10) DBP DOUBLE
i } fullname VARCHAR(30
temperature DOUBLE | doctor_informed VARCHAR(50) temperature DOUBLE (30)
' i i admin_role VARCHAR(20
glucose_level DOUBLE time_informed TIME glucose_level DOUBLE _| (20)
i i contact_number VARCHAR(10
02_saturation DOUBLE hiv VARCHAR(10) 02_saturation DOUBLE | (10)
i email VARCHAR(30
02_saturation_type VARCHAR(30) tb VARCHAR(10) hb_level DOUBLE (30)
admin_password CHAR(60
hb_level DOUBLE cough TINYINT(1) nurse VARCHAR(50) _p (60) R
score INT fever TINYINT(1) disposition VARCHAR(40)
discriminator VARCHAR(50) weight_loss TINYINT(1) >
complaint VARCHAR(80) night_sweats TINYINT(1)
nurse_notes VARCHAR(200) >

Chad Piha
Appendix C: ERD Diagram

Backend component structure

Appendix D

E~
sasuwyuiodde
abew Joj Buesm uonepes 0Lpo! e~
aneay} T
104 Buem Bulusains e sysia db e~
E~
1xa Joj Buniem Bulusaios [sjuswyuiodde db e~
uopisodsip k-~
104 Burpem [Ed2gl M Buipuy e~
ssuenb
swiojysIA - f ainpadoid | . yels
uxs &~ I
Jusweas ~ syusned | ssuenb e SI1UND uonepas
ejep olweufp e e~
saw els sjusned usned saow L usned
n N HElS sjushy E~ jesodsip N jushy e~ sjushy "
xapui
yels E~ |jood jusped g~ seuenyousq € 0Lpa! e~ ejep oweufp "
Byuo)
SysiA uopepas fioisiy [eaipawr e~ yine I~ siadjay N dlulp pus E~ SsuUEPYaUR] |e
SOIUI uoNEPaS [aneay) ul e Bulusaios e U0} YINE 328U e Jood lews ke~ yine <
|euonippe
sanoy asema|ppIp aa paieys s3N0Yy UIWpY
JEINES

Chad Piha
Appendix D: Backend component structure

Frontend Component Structure

Appendix E

sierquened

yeisioisiboy

—

nowupY

i

moyupY

piOWI [
(odun)
eiqeLUpY

wuouneas

Joquepyeis

I
i u‘

piOW3 N

— SIequenNUeIS

lesejey -
oo wenedppy

uonepes.

oW +—|

fili

fepono

sowouonepes -

L 0 [T L a0 o

o
- n_ lepop —
— :\.s_v
M_’
.) — ||
: augaw =
. peOW3 :
ey EJ
wupy
Aone o
BN
peows |
onuoneg | E .
] U
% weunuoddy g
ey 3

omewened +— o0 o7 9 - e
. . . I_V feuano sowouonepes |

Jepeleoiing oiqeLuened peowpI | : : .
—H [—=H

~—f [~} [—=H = | =y | = [=

S v' Iepop — 1epon — o

4

Wounuioddy soun o -

pOW3 (o |
fepono

il

x 1 a

e I e L e el R P e - = _
—_

== 7 !ﬂuﬂ_ﬂ.w uﬁﬁvﬂmﬁ 7 " 7 " 7 e 7 anesyLuj 7.65515.;7 7 obeuy 7 nﬁﬂuﬂa« 7 pieoquseq 7 uny. 7 wnyupy 7 foued uwpy: 7 slyoidiers 7 zhnnu%sm

{uosppuprsdouc)
uepy

weynen

weyneny

Jomegopis

Chad Piha
Appendix E: Frontend Component Structure

Appendix F: First Prototype

Vision Medical Centre [2020-04-12 19:48:27) Heshion Do Conte o Vision Medical Centre [2020-04-12 19:48:27)
Register Patient + S - e
e
Patient Pool A .
LostNome FisiNoms _ Age Gendar tocation

o e

Figure 1: Dashboard

Figure 3: Register patient modal

... W W W

e —

Patient Dogosis - D10 codes

ey =
— ' p— =
2 +
H
e !
>
4
.
= s
: »
..... 1
— >
H
.
|

Figure 4: Procedure form (with voice to text)

e

owete

Ak

Appendix G: Final Prototype

Vision Medical Centre [2020-04-12 19:48:27]

Vision Medical Centre [2020-04-12 19:48:27]

Patient Pool o 5] _Medcaisoy | Releral
- m = .
—n -
o
5
-
=
Figure 1: Patients table Figure 2: Form layout
Vision Medical Centre [2020-04-12 19:48:27] Host
September 2020
Sy Mooy Toesdoy Wednedoy Thrsdey Fidoy Sahwdoy
2
6 7 8 n 12
13 14 15 16 17 8 19
Pasat Narre. Pt N L
e
e
20 2 22 23 24 25 26
27 28 29 30

Figure 3: GP appointments

Findings Treatment

Chvoni: Medcaon

Appendix H: Mobile prototype

= Dashboard = Capture Screening
4 ‘
Active H 1
Patient Pool @) [Screening Information
Mobility
Zach Bresler Option selected v

ID: 9807218737108 Dashboard

Clinician: Dr Moosa RR

caE—— = Appointments
Zach Brestr -

ID: 9807218737108
Clinician: Dr Moosa SBP Waiting for Triage

Zach Bresler
ID: 9807218737108 Temperature
Tight Chest aa——

Waiting for theatre

In theatre
Zach Bresler

ID: 9807218737108
Tight Chest

Discriminator

Waiting for disposition

Zach Bresler Complaint Waiting for exit
ID: 9807218737108 Opton seleciod
Tight Chest : E
Zach Bresler Nurse Notes
ID: 9807218737108
Tight Chest

Zach Bresler
ID: 9807218737108
Tight Chest

Y N
L Capture)

_ Y, L /

Figure 1: List of patients all patients Figure 2: Screening information form Figure 3: Side drawer

Appendix I:

Sedation Clinic:

Patient Pool I oo
° A tmters Omeiten G Commtmemr et -
- At -
o

Figure 1: Application login screen Figure 2: Dashboard

007920130218 0412020 it s it T [-—— @
o + Appointments § 3%/ S a + Appointments f %/ . a
== [A —— x E— s
o
] o
Figure 3: Creating clinic appointment Figure 4: Sedation clinic appointments
S 250 B it it [omre IO T) =
“M.:.:.M + Appointments $ 3%/ & | Guin | odme pema e + Appointments 3w~ —— a
a: E o o o o O oo O B 0 cecmcoman — — o
° — - - — —
[[

Figure 5: Editing, Checking-in and delete appointment function Figure 6: Edit sedation clinic capacity

. e o 2
Patient Pool e [) Patient Pool .
e o G O e D D s G o e s e ot s voien e s
. - Toage ° - - ™ s
.
&
x
]]

Figure 7: Sedation clinic ongoing visits Figure 8: Patient actions

Waiting for triage
et At e - e
Cps - ~
8
s

Figure 9: Waiting for triage table with patient actions

Waiting for triage
P [o— [-

Figure 13: Patient Profile

Figure 10: Additional screening form (with validation)

14 0ct 02 2020 15-14-55 OMT+0200 (Seuth Alrcs Standard Time)

€ PasectDetais Tirws

b=y - AddICD10 Codes

et Teme. =
Coda Description
Do A Tubeeubsis of thr crgara

ABD Tubeweubsis of bonws wnd s

a0t

Aoz

anos
R kbt beecuonis

Oweent

—— MBI Tubeecuosis of geeournary sysem

ATBIO Tuberculosis of gartournary system, unpecied

MBI Tuberculosis of ey ane ureer

O EEE

NBI2 Tuberculosis of isdder

[a8

Figure 15: Add ICD10 code modal

PutctDaen Trnms Screecng amanon Adtinal sermecisg feemncn
Lo
oyos
gt [
<o oxcre st - P —

10101 83 7930 134347 GMT 209 (Sou Arics Samdard Tv)

Waiting for exit

Figure 12: Completing sedation clinic visit

Complete Exit To

g e -

1100103 1018 18 14,50 6MT+0700 (e AP M Time)

Patient Pool

Register Patient

: Register Patient

General Practice (GP):

Patient Pool

Figure 16: GP Dashboard

5400102 3020 13 1942 GAT-0308 (St Aic Stadard i)

o
==
pos General Practice Appointment
-
=
=
-
-]
-
-
= e
. s
= -
-
-
-
=
-

October 2,2020

Figure 18: Create GP appointment (with patient list dropdown)

Figure 20: Patients undergoing their appointment

oGty Toamenen 1oy
» E 2 E
B

Figure 17: GP appointments

5100102 1010 134713 GA1+0700 (Seutn A Startard Tome)

[=) October 2,2020
General Practice Appointment
o
£
-
= Sassen
- Gecne
PEee
= -
- "
-
o
-
- w
oo EE——
oum. *
e
o
12
-
2

Figure 19: Appointment actions

Figure 21: GP Treatment Information Capture (w/ Voice to text)

=== SERISRER] ovrerne

Figure 22: GP patient profile

Admin Panel

Vision Admin Panel Admnpros
Patients

A T A Y T T N W Y
2 ® 2 » @ @ @ @ @

Figure 23: List of all patients

Vision Admin Panel

==

Patients
s s Confirmation x = T
e — . e -
e e al Cortm e
z 0 — — J— it ———
s — — - een e
78 - - e —
z 8 - - S o=
'l - — S o
'l - — - aiopdins L
'l o - - e -

Figure 25: Confirmation modal

Vision Admin Panel arin Pceve
Staff

Figure 27: List of all staff members

Benoficiaries x

Dyname Oata — W o
Sadeton Cics 2 0 -]
e /2 A w— . -

VAR

7 8 - o

P

.
Q

’ 8 -

’ 8 -

’ 8 -

Figure 29: Adding beneficiaries dynamic data

Vision Admin Panel A rofie

Patient Details

Figure 24: Editing patient details

Vision Admin Panel Advin ol

Register Staft

Figure 26: Register staff

Vision Admin Panel e "

e Clink Lecations Beveticiaries Transter Hosgitals
o Locuton Serencany et vt
s L s 8
s L] T |
7 L]
7 L]
7 |]
Exn

4 L]

4 L

4 L

sy (=T x
P——
Sedaton Circs (]
Croweny =
p——— g A

Figure 30: Create sedation clinic (with validation)

Vision Admin Panel "

oo st

Fasests
sttt

Dymamc Dt
Sedation Clrcs

Geners Practice

Figure 31: Past sedation clinics

Mobile application sedation clinic

Book Appointment

Patient Pool

All Patients Started Visits

Search Q

Patient Search

Michelle Tuks

092485092438509

Reason
ooe David

a validation test for length
Herr

Input is too long
Clinic
8147235192391
. 2020-10-02 v
oo Miranda

Loxton
Scheduled

092381234901234 @ Yes

see Justin Derrick

Norman

Add
012394013
ese Jackson Cancel

Polimore

92095145337
.oe Jay

Raw

Figure 33: List of all patients table

" Figure 34: Book appointment (w/ vafidation)

Vision Admin Panel » -

Semne Linked Patients |-
Sania Hogren
R O e - [Pr— o ety
<

[}
Figure 32: Patient-staff link
X
Upcoming Clinics
slsy| Gauteng
02 Capacity: 90 >
Available: 86

+ Appointments i4/90 4

Edit Check-in Delete
- Jay Raw
o - Michelle Tuks

Figure 35: Appointments actions

Upcoming Clinics

[\ Gauteng
02 Capacity: 90 >

Available: 86

+ Appointments f4/90 4

Search Q
Jay Raw
Michelle Tuks

Figure 36: Appointments

Waiting for exit

Complete Exit To X
Exit To
Clinic v

Cancel

Figure 39: Exit to modal

Succesfully 0

moved!

0hr Omin 10sec

[& Transfer ->
B < Transfer
Capture Info

& View Profile

Figure 37: Feedback modal

® Register Patient

Dashboard
Appointments

Waiting for triage
Waiting for theatre

In Theatre

Waiting for disposition

Waiting for exit

General Practice

Figure 40: Expanded hamburger menu

(e}

Procedure
information

g Additional
ion screeening
information

Mobility

Walking

RR

® 0

HR

[4 0

SBpP

® 0

DBP

L 0

Temperature

[4 0

Glucose

® 0

02 Saturation %

- n

Figure 38: Mobile form

Disposition
information

Mobile General Practice:

Patient Pool
s
Search Q

092381234901234
Land Justin Derrick

Norman

012394013
oo Jackson

Polimore

0923841341
eoe Cindy

Thompson

Figure 41: Linked patients table

o
- e
Patient Details
1D number

012394013

First Names
Jackson

Last Name
Polimore

Date Of Birth
1872/12/09 [m]

Gender
Male v

Email Address
jacks@gmas.co

Contact Number
019234810234

Beneficiary
Craven Cottage

Next of kin
Jillson

Next of kin contact number
009411023466

Save

Figure 45: Patient profile (cont.)

Oct 2, 2020

all-day

12am
1am
2am

3am

9am
10am

11am
12pm

Figure 42: Appointments

Patient Medical Referral Findings
Details History

Past Medical History

Hypt
| T8

| Asthma
| Epilepsy

copPp

| oM

Other

Family History
| Smoke
") ETOH

| Drugs

Chronic Medication
Enter in Chronic_medication

ication tags by hitting ente

Figure 46: GP form

- -

General Practice Appointment X

Patient Search

Search for patient
Reason
Reason
Scheduled
® Yes
O No
Appointment Date
2020/10/02 [w]
Start Time
04:30 Q
End Time
05:00 Q
Add
Cancel
Tpm

Figure 43: Book appointment.

Sedation Clinic General Practice
Visits Visits
Date Clinic Location
2020-10-02 Gauteng
Date Clinic Location
2020-09-15 Western Cape

Fig{lfe 44: Patient profile

Appendix J:

Usability tasks

O 001N DNk~ W —

[NS T NS T NG T NG J S Sy S S Y
W= OO0~ WND—=O

. Log in to admin panel. Username: admin, Password: admin

. Register staff member and change their password

. Add dynamic data for locations, beneficiaries and hospitals

. Create a sedation clinic for today

. Link patients to yourself

. Navigate to your email, and change your password

. Register a patient

. Create an appointment with recently registered patient

. If you wanted to increase the capacity of the clinic, what would you do?

. This new patient walks in for his appointment. Please check him in.
. Begin his visit.

. Locate the location of the visit

. Fill in the appropriate information for current phase

. Once done, transfer the patient to the next phase

. Repeat steps 13 and 14 until the patient is ready to be exited
. When ready, exit the patient from the visit

. View patient profile

. Edit info from the visit just ended

. Redirect to general practice

. Create an appointment for today

. Start the visit for that patient

. Edit all information for that visit

. Logout

Appendix K: Frontend unit tests

auth.test.js
waitingForTheatre.test.js
gpVisitForms.test.js
staff.test.js
beneficiaries.test.js
patientPool.test.js
triage.test.js
visitForms.test.js
dynamicData.test.js
disposition.test.js
sedationClinics.test.js
sedationAppointments.test.js
exit.test.js
gpAppointments.test.js
inTheatre.test.js
patient.test.js

Test Suites: i, 16 total
Tests: 7 sed, 76 total

Snapshots:
Time:

Watch Usage:

Figure 1: Summary of all tests

auth.test.js
auth reducer

Test Suites: passed, 1 total
Tests: 3 passed, 3 total
Snapshots: 0 total

Time: 1.428s

Watch Usage:

Figure 3: Token authentication tests

dynamicData.test.js

dynamic data reducer

Test Suites: 1 passed, 1 total
Tests: 11 passed, 11 total
Snapshots: 0 total

Time: 0.552s, estimated 1s

Watch Usage:

Figure 5: Dynamic data unit tests

staff.test.js

staff reducer

Test Suites: 1 passed, 1 total
Tests: 6 passed, 6 total
Snapshots: 0 total
Time: 2.001s

Watch Usage:

Figure 2: Staff unit tests

beneficiaries.test.js
beneficiary reducer

Test Suites: 1 passed, 1 total
Tests: 5 passed, 5 total
Snapshots: 0 total

Time: 0.73s, estimated 1s

Watch Usage:

Figure 4: Beneficiary unit tests

gpAppointments.test.js

general practice appointments reducer

Test Suites: 1 passed, 1 total

Tests: 4 passed, 4 total
Snapshots: 0 total
Time: 0.531s, estimated 1s

Watch Usage:

Figure 6: General practice unit tests

patient.test.js

patient reducer

Test Suites:
Tests:
Snapshots:
Time:

passed, 1 total
passed, 3 total
total

.438s, estimated 1s

Watch Usage:

Figure 7: Patient unit tests

patientPool.test.js
patient pool reducer

Test Suites:
Tests:
Snapshots:
Time:

1 passed, 1 total

3 passed, 3 total

0 total

0.553s, estimated 1s

Watch Usage:

Figure 9: Patient pool unit tests

sedationClinics.test.js
sedation clinics reducer

Test Suites:
Tests:
Snapshots:
Time:

1 passed, 1 total

4 passed, 4 total

0 total

1.175s, estimated 2s

Watch Usage:

Figure 11: Sedation clinic unit tests

disposition.test.js
waiting for disposition reducer

1 total
ssed, 3 total

otal

.554s, estimated 1s

Test Suites: o
Tests: 3
Snapshots:
Time:

Watch Usage:

Figure 13: Disposition unit tests

gpVisitForms.test.js
gp visit forms reducer

Test Suites:
Tests:
Snapshots:
Time:

1 passed, 1 total
6 passed, 6 total
0 total

3.064s

Watch Usage:

Figure 8: General practice visit forms unit tests

sedationAppointments.test.js

sedation appointments reducer

Test Suites:
Tests:
Snapshots:
Time:

passed, 1 total

4 passed, 4 total
total

.546s, estimated 1s

Watch Usage:
Figure 10: Sedation clinic appointments unit tests

visitForms.test.js
visit forms reducer

1 total

Test Suites: 1
1 12 total

Tests:
Snapshots:
Time:

1 i,
0 total
0.646s, estimated 1s

Watch Usage:

Figure 12: Sedation clinic visit forms unit tests

inTheatre.test.js

Test Suites: 1 passed, 1 total
Tests: passed, 3 total
Snapshots: total

Time: .471s, estimated 1s

Watch Usage:

Figure 14: inTheatre unit tests

triage.test.js
waiting for triage reducer

Test Suites: 1 pas , 1 total
Tests: 3 ed, 3 total
Snapshots: @ total

Time: 0.554s, estimated 1s

Watch Usage:

Figure 15: Triage unit tests

waitingForTheatre.test.js
waiting for theatre reducer

Test Suites: 1 passed, 1 total
Tests: 3 passed, 3 total
Snapshots: 0 total

Time: 1.953s, estimated 2s

Watch Usage:

Figure 16: Waiting for theatre unit tests

exit.test.js
waiting for exit reducer

Test Suites: assed, 1 total
Tests:

Snapshots:

Time:

Watch Usage:

Figure 17: Exit unit tests

Appendix L: Backend tests

> vision-server@1.0.0 test C:\Users\Justin Dorman\Desktop\vision-server
> jest

testing/patients.test.js
testing/visits.test.js
testing/info_capture.test.js
testing/visit_forms.test.js
testing/gp_appointments.test.js
testing/sedation_appointments.test.js
testing/auth.test.js
A worker process has failed to exit gracefully and has been force exited. This is 1i

Test Suites: 7 passed, 7 total

Tests: 24 passed, 24 total

Snapshots: @ total

Time: 7.012 s

Ran all test suites.

PS C:\Users\Justin Dorman\Desktop\vision-server> D

[testing/patients.test.js
Create beneficiary
create a new beneficiary (50 ms)
Register patient
create a new patient (24 ms)
Fetch patients
fetch all patients (6 ms)

Test Suites: 1 passed, 1 total

Tests: 3 passed, 3 total

Snapshots: @ total

Time: 2.108 s, estimated 3 s

Ran all test suites matching /patients/i.

testing/auth.test.js
Register staff user
create a new staff member (179 ms)
Change password
change the password of the new staff member (97 ms)
Sign In
sign the new user in (108 ms)

Test Suites: 1 passed, 1 total

Tests: 3 passed, 3 total
Snapshots: @ total

Time: 2.658 s, estimated 4 s
Ran all test suites matching /auth/i.

) testing/sedation appoimtments.test.js
Add new clinic
create a new clinic (57 ms)
Add new appointment
create a new appointment (9 ms)
Edit appointment
edit an appointment (1@ ms)

Test Suites: 1 passed, 1 total
Tests: 3 passed, 3 total
Snapshots: @ total

Time: 2.405 s, estimated 4 s

Chad Piha
Backend tests

testing/gp_appointments.test.js
Add new appointment
create a new appointment (92 ms)
Edit appointment
edit an appointment (9 ms)
Fetch appointments
fetch all appointments (7 ms)

Test Suites: 1 passed, 1 total

Tests: 3 passed, 3 total

Snapshots: @ total

Time: 2.652 s, estimated 4 s

Ran all test suites matching /gp appointments/i.

) testing/visits.test.js
Start Sedation Visit
start a new sedation visit (84 ms)
Start GP Visit
start a new gp visit (22 ms)

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total
Snapshots: @ total

Time: 2.196 s, estimated 3 s
Ran all test suites matching /visits/i.

[testing/info_capture.test.js

Capture screening

capture screening info (56 ms)
Additional screening

capture additional screening info (7 ms)
Procedure

capture procedure info (17 ms)
Capture disposal

capture disposal info (6 ms)
Capture exit

capture exit info (4 ms)
Capture medical history

capture medical history info (4 ms)
Capture treatment

capture treatment info (18 ms)
Capture finding

capture finding info (6 ms)

Test Suites: 1 passed, 1 total

Tests: 8 passed, 8 total

Snapshots: © total

Time: 2.528 s, estimated 3 s

Ran all test suites matching /info_capture/i.

) testing/visit_forws.test.js
Fetch Sedation Clinic Forms
fetch sedation clinic forms (50 ms)
Fetch GP Forms
fetch GP forms (10 ms)

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total

Snapshots: @ total

Time: 1.999 s, estimated 4 s

Ran all test suites matching /visit forms/i.

