
Vision Management System
Chad Piha
 Computer Science Department

 University of Cape Town

 Cape Town, South Africa

 phxcha001@myuct.ac.za

Justin Dorman
 Computer Science Department

 University of Cape Town

 Cape Town, South Africa

 drmjus001@myuct.ac.za

Zachary Bresler
 Computer Science Department

 University of Cape Town

 Cape Town, South Africa

 brszac002@myuct.ac.za

1 PROJECT DESCRIPTION

Vision Medical Suite (VMS) is a Non-Profit Company that

provides free medical and dental care to orphanages, frail care

centres and homes for the mentally and physically challenged

[3]. Vision offers a range of services through volunteers at

individual practices. Additionally, they offer a once a month

mass dental and medical sedation clinic. Vision currently

manages all their operations manually, which hinders their

performance and efficiency. Hence, Vision is in dire need of an

automated system in order to efficiently and effectively keep

track of patients’ visits and manage operations. This system

will hence include a component for both the sedation clinic

and individual practices.

2 PROBLEM STATEMENT

Vision is an NPO and hence has a limited budget. They cannot

afford to outsource the development of this application and

have therefore liaised with the University of Cape Town to

assist. Thus, for our honours project, we have been presented

with the following task: To create an online management

system that streamlines the management of staff, patients and

the various processes executed in Vision’s operations. Vision

has not proposed a budget for this project so we must ensure

minimal cost throughout the development process. We are

thus limited with respect to the tools and software we can use

and can only make use of free software.

Vision requires a patient-centric system that can register or

check in patients for a visit, capture their records and manage

their transition throughout the visit. The application should be

made easy to use in a fast-paced environment. The application

will contain two levels of users, namely staff and admin. The

staff will be the workers who are actively involved with

managing the operations at the clinics/general practices and

will control the patients’ movements and capture their

information. The admin will be the higher organisational level

users and will be able to register staff, add/edit/delete

information and manage the roles and permissions of the staff.

We aim to develop a fully functional, full stack application that

will be used by Vision to ultimately increase their efficiency,

better manage their operations and treat more patients.

3 PROCEDURES AND METHODS

In order to achieve our aims, we will go through the software

engineering process which encompasses the entire range of

associated activities, from project specification to software

production.

The process begins with the requirements analysis phase

where the stakeholders provide us with a detailed scope of the

application. This will be conducted over a video call where the

project proposer will outline both the functional and non-

functional requirements. This allows us to move forward with

the development process and gain an understanding of what

needs to be incorporated in the application in order to ensure

stakeholder value. Once the analysis phase is over and we

have a good understanding of the requirements, we will

proceed to create a high-level design of the application. This

phase will include both a design of the interface and the

database. A prototype will be created which will give a visual

depiction of what the application will look like and what

functionality will be included. The database will be designed

to ensure all important patient visit information gets stored,

and all functions will be able to be implemented. Best

practices will be utilised to ensure a high performance,

scalable application. Following the design phase, the

implementation process will begin, which incorporates the

development of the frontend and backend systems, to

ultimately create the application. We will utilise the agile

development methodology and develop the software in

iterations. The team will work together, simultaneously

working on the frontend and backend to produce mini

increments of new functionality. In the first iteration, the team

will concentrate on developing the foundation of the system,

with the core functionality. Further iterations will build on the

foundation, by producing batches of features. Iterative

releases will improve efficiency and reduce risks by allowing

us to find and fix defects and align expectations early on. [4]

3.1 Design Explanation
A prototype will be required in order to outline the design and

ensure that the exact needs and expectations of the system are

met. This will be achieved by receiving early feedback which

will be used to make changes to the design. It will also allow

us to save time and resources as changes made earlier in the

development process are easier to handle. [20]

A low-fidelity, horizontal prototype will be developed to

illustrate the user interface of the product. This will include a

broader view of the entire system which will include the

layouts of all the windows, menus and transitions.

The prototype will be evaluated by the stakeholders involved,

as well as the Vision staff who will provide qualitative

feedback to further improve the application. The main aim of

this prototype is to identify whether the application captures

all the requirements set by Vision, and if they are presented in

an adequate manner. The prototype will be developed using

Adobe XD, a specialized prototyping tool for mobile and web

applications.

A minimalistic design will be implemented throughout the

web application. It will be designed such that the speed of

usage of application will be maximized, with responsiveness

as a focus point. This is important for the proposed system as

clinicians may often find themselves in time-critical situations.

Simplicity and convenience will also be prioritized as it will

allow staff members to complete their administrative tasks at

a faster rate. Furthermore, the navigation throughout the

system will be clear and user-friendly, a consistent colour

palette and theme will be displayed throughout the

application and user inputs will be minimized to prevent

errors.

The expected challenge will be the compatibility of the

application across various devices and browsers. Each of

these provide different screen sizes and resolutions which our

application will need to adjust to, in order to provide the same

user experience throughout.

3.2 System Explanation
The architecture of the system is separated into layers relating

to its functionality. Our system is split up into three separate

parts, namely the database, application server and the

frontend (React application). The application server is the

middleman of the system and is responsible for processing the

requests that are made by the frontend of the application (the

client). Once these requests are processed by the server, they

will be routed to the database where relevant data will be

gathered and sent back as a response to the server. This data

will then be returned to the frontend of the application where

it will be managed and dealt with to present to the client. JSON

will be used as the standardised format to interchange data

between the client and the server.

3.2.1 Database

Due to the functional capacity of the system to be developed, a

dynamic and interactive web application is required, along

with a database.

A database acts as an incredible tool to record, store, retrieve

and compare data. It is important that the database is

designed using best practices to ensure a scalable, high

performance application [10]. The relational database will be

run on a MySQL server. In the system, lots of important data

needs to be stored and retrieved at a fast rate. It is thus

important to apply best practices to reduce redundancy and

duplication, enhance the quality of information, and increase

overall data integrity, to ultimately result in quick execution of

queries and better performance [10,11].

An SQL will be most appropriate in the case of this system, as

it relies heavily on complex relationships. For each patient

visit, a visit instance will be created, which has a many to

many relationship with the patient table. Any other

information to be captured during the visit, will be contained

in its appropriate table, which has a one to one relationship

with the visit table.

3.2.2 Application server

The application server, which handles the business logic, sits

between the web server and the database. The web server is

there to process HTTP (hypertext transfer protocol) requests

from the frontend (client). It then sends these requests to the

application server. The logic developed in this server then

determines what information it should request from the

database [6, 7]. This logic is the API (Application

Programming Interface). The API defines different routes that

will be called from the frontend. These routes each represent

a different action that makes requests to the database to

create, remove, update, or to delete information. This API will

follow a REST architecture which means that any interaction

with the API requires that all information needed to perform a

specific task must be provided. This increases performance

and scalability of the server as it allows the server to remain

stateless. [8]

The application server will be developed in node.js with the

use of express.js as a framework, to enable fast development

and increased scalability and performance. [9]

3.2.3 Frontend application

In order to build the frontend application, we will use React.js.

React.js is an open-source JavaScript library used to build

single-page applications (SPAs). A SPA sends only a single

request to store all the data, which is transmitted back and

forth to the server, allowing for high access speeds and offline

capabilities.

The user interface of the application will be broken down into

many smaller components which allows for easier

configuration and tuning. Furthermore, React.js provides a

Virtual DOM where all changes are stored. Therefore, once a

change is committed, the Virtual DOM is compared against the

real DOM, and only the related component is updated. This

results in less page re-renders, thus improving application

performance. [12,13]

3.3 System Evaluation

Throughout the development of the application, user testing

and performance measurements will be conducted on each

iterative increment of the system. Dummy data will be used to

test the software during its development. Each increment of

the software will be evaluated and tested by the stakeholders

involved, to ensure we remain in line with their requirements

and that the conceptual model remains intact. Feedback will

be received, and change will be embraced.

Once the application is complete, it will be thoroughly tested

(with the dummy data). To test quality and functionality, the

team will conduct automated unit testing. We aim to further

run a number of evaluations to test the usability and logical

flow of the application. Initially, the selected participants will

be the users of the system within the organisation and will

therefore be able to provide the most meaningful conceptual

insight. We aim to further test the application on users with a

computer science background, as they will have the means to

evaluate the system on a more technical basis.

We plan to use cognitive walkthroughs as a method for our

usability evaluation. Participants will be asked to complete a

series of tasks, while the evaluators (our team) observes and

takes notes. Direct observations will be used such that

interactions, processes and behaviours will be monitored as

the users interact with the application [5]. The participants

will be asked to verbalize their thoughts when using the

application. This allows us to get the participants’ perspective

with minimal influence from the group members. Conducting

the observations will provide valuable insight into the UI/UX

and the functionality of the application, and subsequently

allow for possible improvements based on the results. Once

the evaluations and testing are complete, the application will

be deployed, and made accessible only to authorised users.

Upon deployment, the database will be re-created, and the

system will start from scratch.

4 ETHICAL, PROFESSIONAL AND LEGAL

ISSUES

When the system is completed and deployed, it will be owned
by UCT and Vision Medical Suite. It will become Vision’s
responsibility to manage the long term maintenance of the
application.

As we will be conducting testing of our application with real
users, ethical clearance (expedited) will be required, in the
form of signed or oral consent from the participating
users. There will be no risks during the testing phase as the
usability testing will be done over a video conference call in
order to avoid the risk of exposure to Covid-19. However, the
participants of the evaluations will likely be health workers.
There is thus a potential ethical issue of taking the time of
health workers during a pandemic. To combat this, we will
make sure the evaluations are conducted efficiently and at the

convenience of the participants. We will be testing the
application using fake data, and thus won’t require clearance
for the use of data. Since the data will be fake, there is no
danger of being able to identify a person.

The deployed application will be dealing with real, sensitive

patient data. The application will thus need to be designed

with the assurance of security of information and the

appropriate role-based access configuration, in order to

comply with Department of Health’s requirements around

patient data [2]. To do this, we will design the application with

best security practices in place. Authentication, authorisation

and encryption will be implemented, to ensure access control

and confidentiality. During the testing phase, we will conduct

penetration testing to find vulnerabilities. If a vulnerability is

found, it will be fixed.

The system also needs to comply with the POPI act which

states how institutions should act when collecting, processing,

storing and sharing an entity’s personal information, to

ensure accountability. [1]

5 RELATED WORK

We analysed the following paid hospital management

systems: eHospital systems, Sapphire, Medstar HIS,

Athenahealth, TeamDesk and Health Information

Management Solutions (HIMS); As well as the following open-

source systems: OpenMRS and OpenVista. These management

systems provide a large range of services, many of which fall

outside of Vision’s scope. The functionalities present across

these systems include staff, patient, financial, inventory, bed

and claims management systems, as well as online

appointment scheduling, HR management, dedicated patient

portals and native applications in conjunction with web

applications.

These services are on a more general management scale and

are catered for much larger organizations who have many

departments requiring various functionalities. Conversely,

Vision manages services on a much smaller scale and has a

more patient-centric scope. Vision requires a fine-grained

application to manage their unique services which target

specific beneficiaries. Therefore, having a big system for

Vision, with a large range of non-essential features may result

in a degree of impracticality and may even reduce user

efficiency. [14,15,16,17,18,19,21,22]

Vision staff members will manage the booking of

appointments on behalf of the beneficiaries, leaving the self-

service online booking scheduling system unnecessary. Vision

also requires specialized functionalities catered for their

monthly sedation clinics, which no other hospital

management systems provide. The clinics are located at

different venues, making the bed management unnecessary.

Additionally, finance, inventory and HR management are not

required for Vision’s application.

As an NPO, Vision lacks the budget required for most of the

systems currently on the market and they also lack the budget

to outsource developers to build a customized system for

them. This has resulted in the need for us to create a system

specifically tailored for them at no cost, where the monthly

sedation clinics and daily general practices are considered.

We investigated the possibility of using the open-source

systems and adding the various specific functionalities

required by Vision, however we found this to be inefficient.

Doing so will take up a lot of time trying to understand the

system and integrate the functionalities. Additionally, there

are more security risks as the code can be seen, making it is

easier for hackers to find exploits. Moreover, developing a

system from scratch would allow for greater customization

and control over the system, and the system can be more

efficient as we will provide the exact requirements.

6 ANTICIPATED OUTCOMES

6.1 System
6.1.1 Software

The system to be created will be a web application, compatible

with both mobile and desktop devices. The system will be an

interactive application where the users will be able to manage

the transition of patients throughout their visits and capture

necessary information inherent to said visits. The application

will consist of components to manage both general practice

and sedation clinic operations. In each component, users will

be able to view and manage patient appointments on a

specific day and select a patient from the appointment list to

start their visit. Thereafter, the visit journey will begin. For the

general practice component, patients will be managed

individually, with necessary information (relevant to the

service being rendered) being captured relating to their visit.

The sedation clinic component, to the contrary, is a mass clinic

which will require multiple patients to be managed at once.

The visits will thus be split into various phases. In each phase,

there will be a list of patients waiting for the respective

activity. Patients will be ordered by their urgency and waiting

time. The users will be able to select patients from these lists

and capture information relevant to the phase they are in.

Once the required information is captured, users will then be

able to move the patients to the next phase, until the visit is

complete, and the patient exits the clinic.

Included in the system will also be an admin panel, where

specific admin users will be able to manage high level

operations relating to the system. These include registering

general users, adding, editing, and deleting information, as

well as viewing reports based on data collected from visits.

6.1.2 Key features

• Sign into the system, and choose general practice or

sedation clinic component (if sedation clinic is

running on that day)

• View list of active visits and all patients in the

system. Selecting a patient should display their

profile, including information on their past visits (if

permitted access).

• Register patient, book patient appointments, cancel

bookings and push bookings forward. There should

be a separate management interface which allows

for flexibility when managing appointments.

• [General practice]: Select patients and capture

information relevant to the service being rendered.

• [Sedation clinic]: Select patients and move them to

different stages of the clinic. These stages include

waiting for triage, waiting for theatre, in theatre,

waiting for disposition and waiting for exit.

• Capture and edit patient information relevant to the

stage they are in.

• Admin panel

• Register staff. Email will be sent to staff

members with a link with an expiration

time. The link signs the staff in and

requests that they change their password

• Manage user roles and permissions

• Add/edit/delete information

• View automatically generated reports

6.1.3 Design Challenges

A major challenge anticipated in the creation of the system

would be the inability to perform live tests and direct

observations at the clinics, due to Covid-19. This prevents us

from getting first-hand experience to observe the operations

of the clinics. This may limit our understanding of the

requirements and force us to rely solely on the information

provided by the project proposer.
There is a further design challenge to manage the balance

between the complexity and simplicity of the system. The

system has a range of complex functionalities that need to be

designed in a way to ensure optimal usability and user

friendliness. This needs to be the case as the application

should be easy to use in a fast-paced environment.

6.2 Expected Impact of the project
Implementing a healthcare management system will help

Vision Medical Suite effectively and efficiently manage their

clinics and associated general practices. Processes will

become seamless, removing the effort of manually recording

and managing operations. It will enhance the staff’s ability to

coordinate care, streamline the search of patient files, and

increase data security. This system could potentially enable

Vision to accommodate more patients in their once a month

clinic, as well as allow general practices to see more patients

from Vision’s affiliated beneficiaries.

People in the beneficiaries who are unable, or find it difficult,

to receive healthcare will have access to well run, organised

clinics and general practices.

6.3 Key Success Factors
The success of the system is based on three key factors,

including performance, usability and Quality Assurance (QA)

and testing results.

In terms of performance, measurements will be conducted to

determine if there is a general improvement in efficiency and

effectiveness of operations, after the system gets introduced.

After deployment of the system, the users will provide

feedback on how their experience was while using the system.

If the feedback is positive, and the system effectively performs

its fundamental job of managing operations with minimal

issues, then the project will be regarded as a success. If the

feedback is negative, and the system fails to provide its

fundamental functionality and has many issues, it will be

regarded as unsuccessful.

Furthermore, to fully ensure that the systems functionality is

working successfully, we will conduct QA and testing on the

system. If the system passes all unit tests – test cases written

to ensure specific functionality is working as desired – the

system will be regarded as successful. Otherwise, we cannot

deem the project as successful.

7 PROJECT PLAN

7.1 Risks and Risk Management Strategies
The risk and risk management strategies can be seen in our

Risk

Matrix table (see Appendix A).

7.2 Timeline
This project runs from 30 March 2020 to 19 October 2020,

and the timeline can be seen in our Gantt chart (see Appendix

B).

7.3 Resources Required

• Three computers with at least 4 GB of RAM, intel i5

processor and minimum 128GB SSD

• Express.js

• Node.js

• JavaScript

• CSS (Cascading Style Sheets)

• HTML (Hyper Text Mark-up Language)

• JSX

• JOI

• MySQL

• SQL

• RESTful APIs

• Slack

• GitHub

• React.js

• Redux

• Servers for hosting

• Jira

• Visual Studio Code

• NPM package manager

• Adobe XD

7.4 Deliverables
Gather project requirements

and features
Fri 17-April

Define functional requirements Fri 1-May

Define non-functional

requirements
Fri 1-May

Basic break down of team

member roles
Thu 30-April

Database tables and basic

database design
Sun 17-May

Use case diagram Fri 1-May

Literature Review Mon 11-May

Low-fidelity prototype

(desktop)
Tue 19-May

Low-fidelity prototype (mobile) Wed 3-Jun

Database (MySQL) design and

set up
Mon 18-May

Configure application server Wed 13-May

Complete RESTful API

endpoints
Sun 19-July

Complete Authentication on the

backend using JWT
Sun 24-May

Complete authorisation of API

endpoints
Fri 10-Jul

Connect the database and the Wed 20-May

server

Create a React.js project using

create-react-app
Mon 18-May

Complete structuring of

frontend application pages
Fri 31-Jul

Complete frontend application

components
Fri 31-Jul

Complete frontend

functionality
Wed 12-Aug

Create an Admin Panel Fri 10-Jul

Weekly reports Sun 9-Aug

QA and testing Fri 31-Aug

7.5 Milestones
Table 1 shows the major project milestones to diarise.

Table 1: Table showing the project milestones

Literature Review Tue 12-May

Completion of analysis Tue 12 May

Completion of database Tue 26-May

Project Proposal due, including project

plan

Tue 2-Jun

Completion of interface design Thu 4-June

Completion of page structuring Sat 6-June

Review of staff feedback on proposals

Mon 18-Jun

Revised Proposal Finalized and

uploaded to Vula

Mon 29-Jun

Completion of API Sunday 19 July

Initial Software Feasibility

Demonstration

Mon 3 Aug – Tue

11 Aug

Completion of frontend functionality Wed 12-Aug

Weighting for project marking decided

Mon 17-Aug

Completion of QA and testing Sat 31-Aug

Final Complete Draft of paper Fri 11-Sept

Project Paper Final Submission Mon 21-Sept

Project Code Final Submission Fri 25-Sept

Final Project Demonstration Mon 5 Oct - Fri 9

Oct

Poster Due Mon 12-Oct

Web Page Mon 19-Oct

7.6 Work Allocation
We have ensured that the work allocation has been equally

distributed amongst the group members. The split up of the

tasks ensure that each member is working on separate

components of the system. Although there is interleaving

between some features, the features will still be able to work

independently based on the modularity of the tasks.

Chad Piha:
• Information Capture & posting to database for

general practice (GP) and sedation clinic

• UI/UX, Structure frontend containers and

components and Prototyping

• Device Compatibility

• Editing

staff/patient/screening/procedure/institution/

appointment information for GP and sedation clinic

• Visualizing weekly reports

• Voice-to-text, Printing option API

• Validation and error handling

• Screen responsiveness

• Documentation

• Appointments calendar

• QA and testing

Justin Dorman:
• Token authentication and management

• Ensure privacy and confidentiality - Authorisation

• Database design and queries

• Admin panel: Functionality

[Server side functionality]:
• Register patient and staff

• Get lists of patients and visits

• Add/edit/delete all visit related information

• Management of appointment system (check-in

patient, schedule booking, cancel booking, push

booking forward)

• Validation and error handling [server side]

• Generate reports

• QA and testing

Zachary Bresler:

• Frontend state management

o Which additionally includes creating

actions to fetch, post, delete and update

data in the database

• Structure frontend containers and components

• Security and encryption

• Server configuration and basic API

• Connect server to database

• Performance enhancements techniques

• Generating reports

• Admin panel: Set up and structure

• Search (for ICD10 code and medication) API’s

• Waiting lists management

• Appointment frontend management

• Block saved credentials on browser

• QA and testing

• Email functionality

REFERENCES

[1] Workpool. 2016. What is POPI? The Protection of Personal Information

(PoPI) Act explained. Retrieved May 29, 2020 from

https://www.workpool.co/featured/popi

[2] Health Professions Council of South Africa. 2016. Confidentiality: Protecting

and Providing Information. ACM 16, 1-5

[3] Vision Medical Suite. 2016. About us. Retrieved June 2, 2020 from
http://www.visionmedicalsuite.co.za/about-us/

[4] Gaurav Kumar, Pradeep Kumar Bhatia. 2012. Impact of Agile Methodology
on Software Development Process. International Journal of Computer
Technology and Electronics Engineering (IJCTEE) 2, 4 (August 2012), 46-49.

[5] CDC. Data collection methods for program evaluation: Observation No. 16.

Retrieved May 9, 2020 from

https://www.cdc.gov/healthyYouth/evaluation/pdf/brief16.pdf

[6] IBM. 2020. Introduction: Application servers. Retrieved April 24, 2020 from
https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.web
s phere.base.doc/ae/welc_servers.html

[7] NGINX. n.d. NGINX: What Is an Application Server vs. a Web Server?
Retrieved April 25, 2020 from
https://www.nginx.com/resources/glossary/application-server-vs-web-
server/

[8] Roy Fielding. 2000. Architectural Styles and the Design of Network-based

Software Architectures. Ph.D. Dissertation. University of California, Irvine.

[9] Express.js. 2019. Express.js. Retrieved April 27, 2020 from

https://expressjs.com/

[10] Leslie Bloom. 2019. Benefits of Using a Database.

(June 2019). Retrieved April 22, 2020 from https://bizfluent.com/facts-

4924693-benefits-using-database.html

[11] Kristi Castro. 2018. The benefits of good Database Design.
(July 2018). Retrieved April 22, 2020 from

https://www.tutorialspoint.com/The-benefits-of-good-Database-Design

[12] Reactjs. N.d. React. Retrieved June 2, 2020 from https://reactjs.org/

[13] Hima Chitalia. 2017. Hey React, What is the Virtual DOM?. (October 2017)
Retrieved June 2, 2020 from https://medium.com/coffee-and-codes/hey-react-
what-is-the-virtual-dom-
466ec333bf9a#:~:text=%E2%80%9CThe%20Document%20Object%20Model
%20(DOM,can%20connect%20to%20the%20page.

[14] Adroit Infosystems. eHospital Systems. Retrieved from
https://www.adroitinfosystems.com/products/ehospital-systems

[15] Sapphire. Sapphire Hospital Management System. Retrieved from
https://www.sapphirehms.com/

[16] Pinaacle, "MedStar Hospital Management and Information System,"
Available: http://medstarhis.com/docs/Medstar-Brochure.pdf. [Accessed 6 May
2020].

[17] AthenaHealth, "Home Page," 2020. Available:
https://www.athenahealth.com/. [Accessed 6 May 2020].

[18] TeamDesk. 2020. Medical Practice Manager database. Retrieved May 7,
2020 from https://www.teamdesk.net/

[19] NBS Digital Technologies. 2020. Hospital Information Management Solution
(HIMS). Retrieved May 7, 2020 from https://nbsdt.com/hims/

[20] Shanuj Mishra. 2019. The Importance Of Prototyping In Designing.
Retrieved June 2, 2020 from https://uxdesign.cc/importance-of-prototyping-in-
designing-
7287c7035a0d#:~:text=Following%20are%20the%20fundamental%20reason
s,focusing%20on%20important%20interface%20elements.

[21] OpenMRS. 2020. OpenMRS. Retrieved July 11, 2020 from
https://github.com/openmrs

[22] Andy Pardue, Derek Veit, Pete Johanson, Rob Kilian. 2020. OpenVista®.
Retrieved July 11 from https://sourceforge.net/projects/openvista/

Appendix

A. Risk and Risk Management

Risk
Number

Risk Impact Probability Management/ Mitigation

1 Requirements inflation - Features

that were not identified at the

beginning of the project emerge that

threaten estimates and timelines.

7 7 Account for additional time for
implementation in the project planning in
case the risk becomes a reality.

2 Inherent schedule flaws - Incorrect
scheduling of tasks resulting in the
project not being completed.

10 6 Ensure core implementation is completed

first. Concentrate on the main
functionality, and once that is completed,
focus on the extra features.

3 Poor productivity - Lack of
urgency results in loss of time in

early project stages that can never be
regained, subsequently resulting in a
low standard of work.

8 4 Making use of management tools and
planning in advance, setting deliverables
and timelines.
Possible penalties can be introduced if a
team member is not putting in the
required amount of work.

4 Imperfect knowledge between

group members - Lack of

intragroup communication resulting
in members not being aware of

what other group members are
doing which can subsequently result

in time being wasted, delaying the
overall progress.

8 5 Using software communication tools such
as Slack to ensure the group aligned at all

times during development.
Additionally, scrum methodology will be

enforced, with a daily stand up meeting.

5 Absence of group members -

Group members not showing up for
group meetings, or getting ill and

not being able to work, or not

communicating on the group
communication channels resulting in

delays and errors.

9 6 Ensuring that if a group member is to be

absent then they should inform the other
group members. The other members can

therefore put in the necessary time and

effort to cover the potential loss in
progress.

6 Unclear specifications (unclear

breakdown of requirements) -

Conflicts may arise between

requirements, resulting in either
insufficient or unclear

specifications. This could be a result

of the project specifications not
being properly broken down

9 7 Before development commences, ensure

that all specifications and requirements
are understood by all involved, to lessen

the impact of this risk occurring. If any
requirement is unclear, it should be

clarified with the stakeholders involved.

7 Gold plating - Adding features that
are out of the scope of the project’s
requirements resulting in wasted

time, and thus delaying the project.

5 6 Ensure core implementation is completed

first. Concentrate on the main

functionality and features that match the

requirements, and once that is

completed, focus on the extra features.
8 Software errors - Issues with the

chosen software due to conflicts
with other software or the software’s
inability to achieve a specific

requirement.

7 6 All software should be researched

indepth to ensure its compatibility with

other software. Additionally, have backup

software that can migrate into the tech

stack with little effort.

9 Losing or accidentally deleting
code - Not saving work or

accidentally deleting files or code
snippets resulting in lost progress

and errors in the code.

10 5 Using a version control service such as

GitHub to keep track of different versions

of the code. Code should be regularly

backed up to an online repository. If any

issues arise, an earlier version of the code

can always be recovered.

16 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18
4/20 5/20 6/20 7/20 8/20 9/20 10/20

Vision management system 4h 47%

 Analysis 2h 100%
 Completion of analysis 0 100%
 Requirements analysis meeting 2 100%
 Use case diagram 0 100%
 Define functional requirements and ... 0 100%
 Break down of team member roles 0 100%
 Literature review 0 100%

 Design 0h 82%
 Completion of design 0 0%
 Database design 0 100%
 User interface design (desktop) 0 100%
 User interface design (mobile) 0 100%
 Software design 0 100%
 UI feedback 0 50%

 Backend Development 0h 35%
 Completion of backend 0 0%
 Admin Panel 0 0%
 Database 0h 100%
 Completion of database 0 100%
 Configure database and create dat... 0 100%
 Server 0h 100%
 Configure and create application s... 0 100%
 Connect application server to data... 0 100%

 Application Programming Interface... 0h 48%
 Completion of API 0 0%
 Dashboard 0h 100%
 Get active visits 0 100%
 Get all patients 0 100%
 Appointments 0h 0%
 Get list of appointments 0 0%
 Create appointments 0 0%
 Manage appointments 0 0%
 Start visit 0h 100%
 Create visit and log information 0 100%
 Create empty shells for phases 0 100%
 Waiting lists 0h 100%
 Get list of patients in lists 0 100%
 Add patients to lists 0 100%
 Remove patients from lists 0 100%
 Phase information 0h 100%
 Capture information 0 100%
 Edit information 0 100%
 Manage bridging relationships 0 100%
 End visit 0h 100%

Chad Piha
B. Gantt Chart

16 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18
4/20 5/20 6/20 7/20 8/20 9/20 10/20

 Remove waiting lists 0 100%
 End visit session 0 100%
 General Practice 0h 0%
 Manage visits 0 0%
 Capture/edit information 0 0%
 Manage appointments 0 0%
 Admin 0h 0%
 Manage roles and permissions 0 0%
 Add/edit/delete information 0 0%

 Authentication 0h 100%
 Configure JSON Web Token 0 100%
 Create API endpoint for sign in 0 100%
 Create middleware 0 100%

 Authorisation 0h 0%
 Manage role-based access configurat... 0 0%
 Control access for each endpoint 0 0%

 Frontend Development 1h 42%
 Completion of frontend functionality 0 0%
 Create react app 1 100%
 Set up Redux 0 100%
 UI components 0 80%
 UI Containers 0 60%
 Functionality 0h 0%
 View reports 0 0%
 Capture/Edit visit information 0 0%
 Manage waiting lists 0 0%
 Manage appointment 0 0%
 Register staff 0 0%
 Switch between general practice a... 0 0%
 View patients' past visits 0 0%
 View user profile 0 0%
 Authentication 0 0%
 Register patient 0 0%
 Manage user roles and permissions 0 0%
 Add/edit/delete information 0 0%
 Additional functionality 0 0%

 QA and testing 0h 0%
 Completion QA and testing 0 0%
 Refactoring 0 0%
 Review all requirements 0 0%
 Design test cases 0 0%
 Write unit tests 0 0%
 Integration testing 0 0%
 Performance testing 0 0%
 Security testing 0 0%

16 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18
4/20 5/20 6/20 7/20 8/20 9/20 10/20

 Cross-platform testing 0 0%

 Version Control 1h 100%
 Set up Git repository (server) 1 100%
 Set up Git repository (web app) 0 100%

 Honours Project Deliverables 0h 13%
 Project proposal and project plan 0 100%
 Initial software feasibility demonstrat... 0 0%
 Final complete draft of paper 0 0%
 Final Project paper 0 0%
 Project code - final submission 0 0%
 Final project demonstration 0 0%
 Poster due 0 0%
 Web page 0 0%

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org
Zach

