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e SB3’s DRL algorithms were integrated with Optuna

for hyperparameter tuning. Custom wrappers and
simulation environments, significantly reduced
training time and improved experimental

reproducibility.
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DRL vs PID DRL vs DRL | | On vs Off Policy

e A2C and SAC were the fastest e On-policy had an extremely fast
DRL consistently outperformed and most stable. computational throughput but
PID across all systems, especially « PPO was slower but balanced. exhibited low sample efficiency.
as system complexity/noise grew. » TD3/DDPG were noise-sensitive » Off-policy exhibited high sample
 DQN performed well despite its efficiency, but at the cost of
discrete nature. longer training times.
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Conclusions

The results show that DRL algorithms, especially actor-critic algorithms, outperform classical PID
controllers in both speed and precision across varied continuous control systems. This highlights the potential
of DRL to handle complex, nonlinear control tasks that challenge traditional methods.
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