

Main Point

data. Address computer aided diagnosis tools with synthetic the data scarcity issues faced

Summery

MS-SSIM and MMD are the most suitable metrics for medical data.

anonymisation. for complex medical data generation. cGANs are better at preserving medical data Inpainting diffusion models are better suited

Diffusion Objectives

SSIM, and MMD. learning curves for all models using SSIM, MSmodels to the GAN models in terms of image Compare the Flux.1-dev (FLUX) and Stable Diffusion XL 1.0 (SDXL) latent diffusion

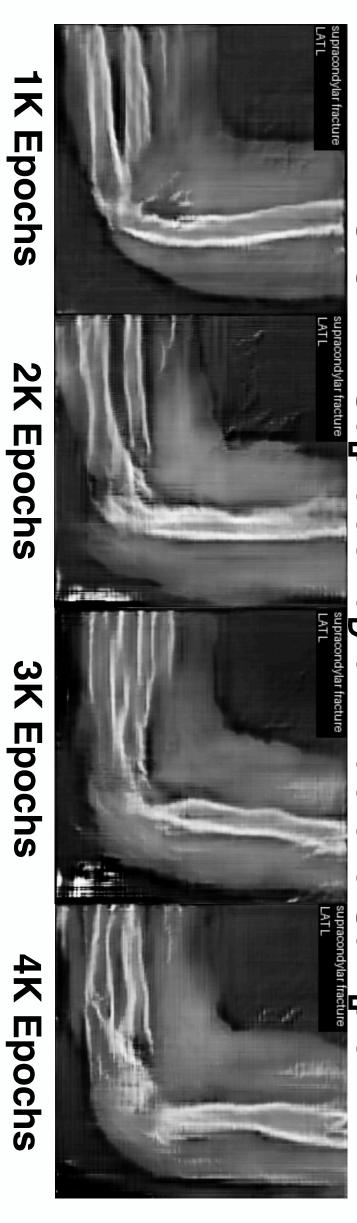
Diffusion Conclusions

and performed better than the GAN models. Diffusion models showed better training curves FLUX outperformed SDXL.

to create focused and realistic images. Image inpainting allowed the diffusion models

My Suprecondy er R R R R

निल्लान्य निल्लान्य


0 Epochs LUXA Suprecondyler 60 **Epochs** 120 Epochs निल्लान्य श्वामिन 200 **Epochs**

60 Epochs

120 Epochs

TAGE Suprecondy let Fredure Semple

AG-GANH Suprecondyler Fracture Sample

1K Epoc SH

2K Epochs

3K Epochs

4K Epochs

Metries Objectives

data. adversarial transformations found in medical low Identify sample image quality metrics that are reliable at and resiliant common

Metries Condusions

transformations. MS-SSIM and MMD were the most robust to

samples Only out of 14 pathologies had enough for reliable FID and MMD scores!

GEMN Objectives

terms of GAN) Compare training stability. the the Auxiliary Classifier-GAN (AC-Twin AC-GAN (TAC-GAN) in

diversity. Compare the cGANs to SDXL in terms of image

HAN Conclusions

GAN collapse. Partial TAC-GAN quality improvement over ACbut increased susceptibility to mode

SDXL showed greater diversity. tendency towards memorization, cGANs

