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Abstract

Manual orthopedic X-ray diagnosis suffers from a combination of
time cost and human error. However, the lack of large and high-
quality data sets due to privacy concerns has led to existing medical
data sets being small and containing adversarial or messy data.
This has hindered the development of suitable pathology diagnosis
tools. Several architectures have been proposed for the purposes
of image generation, with the most prominent being Generative
Adversarial Network-based and diffusion-based models. However,
few of these have been applied to medical imaging problems and
large diffusion-based models such as Flux.1-dev and Stable Diffu-
sion XL have been avoided due to high fine-tuning costs. Thus,
the purpose of this study was to critically analyze three older Gen-
erative Adversarial Network approaches and two state-of-the-art
latent diffusion approaches to image generation with regard to their
efficacy in learning the underlying patterns in elbow radiograph im-
ages to generate suitably realistic images for training classification
models. This study presents a mask-based fine-tuning method for
SDXL and FLUX that has been validated in terms of the Structural
Similarity Index Measure, Multiscale Structural Similarity Index
Measure, and Maximum Mean Discrepancy metrics and represents
a state-of-the-art approach for the creation of synthetic medical
data. The primary findings demonstrated that fine-tuned latent
diffusion-based approaches, specifically the Flux.1-dev model, were
the most suitable for the task of radiograph image generation due
to several improvements over Generative Adversarial Network ap-
proaches. This has resulted in a technical contribution to the field
of synthetic medical data generation with a cutting-edge approach
that scores well across the aforementioned metrics.

1 Introduction

With the rise of statistical-based machine learning algorithms and
the prominence of the neural network as a universal function ap-
proximator, these algorithms have seen a large proliferation in
terms of the number of subarchitectures and widespread use in a
wide variety of fields. One such field is that of Computer-Aided Diag-
nosis (CAD), where machine learning algorithms such as the Convo-
lutional Neural Network (CNN) have been used to identify patholo-
gies present in a variety of medical imaging fields [11][33][1][50].
Due to the ability of machine learning algorithms to find and exploit
underlying patterns in medical data, relative success has been seen
in accurately diagnosing various pathologies, with several models
achieving accuracy scores in the high 80% to low 90% range [11][50].
Despite this success, these algorithms have not reached the accu-
racy scores of 95%-97% for human radiologists [58]. However, these
approaches offer methods to reduce the number of human errors,

which account for approximately 40 million diagnostic errors annu-
ally per year [24]. These misdiagnoses result in unnecessary deaths,
unintended injuries or complications, wasteful medical expenditure,
and malpractice lawsuits [24]. Therefore, these machine learning
algorithms have the potential to save lives, money, and time.

Several issues arise from the need to train CAD models, the most
prominent of which is that these algorithms require large, clean,
and evenly distributed data sets in order to make optimal use of
the information and produce accurate diagnoses. Due to policy and
regulatory frameworks such as the US Health Insurance Portability
and Accountability Act (HIPAA) [46] and the General Data Pro-
tection Regulation (GDPR) [5], which were created to control the
dissemination of medical data and ensure the privacy of confiden-
tial patient information, these regulations have led to issues such
as medical data sets that are often small, unevenly distributed, and
contain adversarial data. This is due to the high costs and difficulty
associated with the anonymization process of medical data and the
laborious procedures involved with the sharing of medical data
with third countries [15].

Therefore, several image generation machine learning algorithms
based on the Generative Adversarial Network (GAN), such as the
Wasserstein GAN (WGAN) [3] and the Auxiliary Classifier GAN
(AC-GAN) [53] have been used for the purposes of anonymization of
medical data and extension of data sets [17][13][19]. With a notable
exception being the Twin Auxiliary Classifiers GAN (TAC-GAN),
which is theorized to be an improvement over the AC-GAN architec-
ture [35]. A separate branch of image generation machine learning
algorithms is the latent diffusion-based models [27], namely the
Stable Diffusion family of models such as the Stable Diffusion XL
1.0 (SDXL) [16] and the Flux.1-dev (FLUX) models [51]. The latent
diffusion approach to image generation is considered a state-of-the-
art technique and has been shown to outperform both GAN-based
and Variational Autoencoder (VAE)-based models for image gener-
ation tasks [27] [9] [6]. Diffusion-based models have seen success
in their use for the generation of synthetic Computer Tomogra-
phy (CT) scans, Magnetic Resonance Imaging (MRI) scans, and mi-
croscopic images [1] [33]. Despite the images showing promising
quality, incorporating them into the training data either worsened
the performance of the classification models or did not enable the
classification model to achieve human-level performance. Further-
more, minimal effort has been made to fine-tune existing models
such as SDXL and FLUX due to the large costs associated with
training these models [41] [51]. A notable feature of these models is
mask-based generation, which offers both context of the image to
the models and a reduction in the amount of image pixels required
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to learn. This, in combination with text prompts provided to the
models, simplifies the image-generating process for the models and
allows them to be fine-tuned for the generation of specific areas in
medical images where specific pathologies may occur. This has the
potential to allow for more accurate and focused synthetic images.

This study begins with key examples of previous GAN-based
approaches to the generation of synthetic medical images, newer
diffusion-based approaches to the generation of synthetic medical
images, state-of-the-art latent diffusion-based approaches to the
generation of images, and descriptions of the three key metrics
chosen for model evaluation, in Section 2. Thereafter, the general
experimental methodology is described in Section 3. Finally, the
results are presented in Section 4 and discussed in Section 5.

1.1 Research Question

Does FLUX outperform SDXL and do these latent diffusion-based
methods outperform WGAN-GP, AC-GAN, and TAC-GAN in terms
of their efficacy in learning the underlying patterns in elbow ra-
diograph images to generate suitably realistic images for training
classification models?

This question addresses several key issues in current state-of-
the-art research, namely, the lack of existing studies which fine-
tune the SDXL and FLUX models, the lack of application of the
SDXL, FLUX, and TAC-GAN models into synthetic medical data
generation, the low data problems experienced during the training
of CAD models [11][58] due to restrictions on the compilation
and sharing of large medical data sets [46][5][15], and the issue of
current synthetic medical data not being of the same quality as real
data [1][17][19][33]. Therefore, this is an important and relevant
question in the context of synthetic medical data generation and,
in answering it, has the potential to aid the development of human
performance level CAD tools for the purposes of reducing human
error in diagnoses, potentially saving money, time, and human
lives. The efficacy of each model will be measured by measuring
SSIM [45], MS-SSIM [59], and MMD [43] on the output synthetic
radiographs of each model and plotting the curves for each of these
metrics as the fine-tuning or training epoch increases. It should
be noted that this study does not attempt to justify the superiority
of latent diffusion-based models over GAN-based models, as this
has been extensively covered in Section 2; rather this paper aims to
determine whether fine-tuning large, pre-trained latent-diffusion
models may allow for more stable learning and better applicability
to medical radiographs than GAN-based methods. Please, see Table
2 for the experiments chosen to analyze the research question.

2 Related Works

This section covers both the older GAN-based and state-of-the-art
latent diffusion-based image generation techniques. Architectural
improvements are discussed and the superiority of latent diffusion
in image generation over GAN-based methods is justified. Two
key latent diffusion models are identified and performance compar-
isons between the two models are discussed. Thereafter, the chosen
metrics for image evaluation are described.

2.1 GAN-Based Image Generation

Prezja et al. [17] proposed a WGAN with Gradient Penalty (WGAN-
GP) model for the generation of knee osteoarthritis X-ray images
which produced images of sufficient quality such that a panel of
experts could distinguish between real and synthetic images with
an accuracy of only 61.35%. However, images were generated at
only 210x210 pixels, which may have influenced the ability of the
experts to accurately classify images as real or synthetic, and when
synthetic images were used to train a classification model, the classi-
fication accuracy dropped by 3.79% compared to purely real images.
Indicating that the generated images were not of the same quality
as the real images.

Sun et al. [19] proposed an AC-GAN model for the generation of
synthetic MRIs for vertebral units, which were evaluated in terms of
diversity and fidelity. The synthetic images produced by the model
showed good generalizability and little overfitting [19], indicating
good diversity. However, the classification model trained on syn-
thetic images performed worse than when trained on purely real
images, indicating poor realism and fidelity.

TAC-GAN [35] improved the base AC-GAN architecture by
adding a second auxiliary classification model (the twin classifier).
This addressed a core logical error present within AC-GAN, which
ignored the negative conditional entropy when training. This im-
provement allowed TAC-GAN to theoretically overcome the low
intra-class diversity problem present in AC-GAN and reduced the
tendency of the model to mode collapse [35]. At the time of writing,
there are no known implementations of TAC-GAN within a medical
context.

2.2 Diffusion-Based Image Generation

Marioriyad et al. [9] proposed that diffusion-based models outper-
form VAE-based models in compositional generation ability by eval-
uating several state-of-the-art diffusion-based models and two state-
of-the-art autoregressive-based models on the T2I-CompBench data
set [30]. To test compositional generation ability, a variety of met-
rics, such as CLIP similarity [23], BLIP-VQA (to measure attribute
binding capabilities) [25], and UniDet (to measure relational posi-
tions and count the number of objects in synthetic images) [60],
were used. It was found that diffusion models generally outper-
formed VAEs in correctly aligning visual images with the textual
prompts provided, especially when the textual prompts were com-

plex [9].

Dhariwal & Nichol [6] proposed that diffusion-based models
outperform GAN-based models in generational sample quality and
stability by using a variety of metrics such as Frechet Inception
Distance (FID), Spatial FID (sFID), precision, and recall. Diffusion-
based models generally outperformed GAN-based models in these
metrics, with consistently lower FID and sFID scores, implying that
diffusion-based models produced images that were more similar to
real images in terms of quality and diversity, and had consistently
higher precision and recall scores, indicating better fidelity and
diversity (better data coverage) of generated samples [6].



Nguyen et al. [33] proposed a lightweight diffusion-based model
for Computer Tomography (CT) chest scans of the SARS-CoV-2
pathology, which showed promising generation quality when qual-
itatively analyzed. In addition, al Nomaan Nafi et al. [1] proposed a
separate set of diffusion-based models for brain tumor MRI scans,
Acute Lymphoblastic Leukemia (ALL) microscopic images, and
chest CT scans of the SARS-CoV-2 pathology, respectively. These
models were used to generate synthetic data sets of 1700 brain
tumor MRI, 1000 microscopic ALL, and 1500 Sars-CoV-2 CT scans.
Eight state-of-the-art classification models were trained on the re-
sulting synthetic data set, with ResNet-50 [29] achieving the highest
accuracy of 78.24% for Sars-Cov-2 CT scans, VGG-19 [57] achieving
an accuracy of 86.46% for brain tumor scans, and DenseNet-121 [18]
achieving an accuracy of 91.38% for the ALL images. However, the
classification models were not trained on purely real images, and
the accuracy scores were not as high as those of human specialists
[58].

2.3 Stable Diffusion

Rombach et al. [41] identified that diffusion-based models surpassed
other methods such as GAN-based models in terms of quality and
stability. However, a key issue was the significant increase in com-
putational resources required to train and conduct inference on a
diffusion-based model. Therefore, the technique known as latent dif-
fusion was proposed as a solution to the significant computational
costs while preserving important semantic and perceptual details.
The Stable Diffusion family of models leveraged this approach to
see a significant reduction in computational cost while maintaining
competitive performance in unconditional image generation, text-
to-image synthesis, resolution up-scaling, and image inpainting
in terms of FID, IS, precision, and recall scores [41]. At the time
of writing, there are no known implementations of fine-tuning
a Stable Diffusion model for the purpose of generating synthetic
medical data.

2.4 FLUX

The FLUX family of models is a set of new text-to-image latent diffu-
sion models developed by Black Forest Labs [51]. The models mark
an improvement over other latent diffusion-based methods, such
as the Stable Diffusion family. At the time of writing, no technical
report existed for FLUX. However, Marioriyad et al. [9] propose
that FLUX employs a hybrid architecture consisting of numerous
state-of-the-art diffusion-based architecture techniques, such as
multimodal [39] and parallel [34] diffusion transformer [54] blocks
operating within a flow matching [44] framework, rotary positional
embeddings [26], and parallel attention layers [34] to achieve state-
of-the-art image generation capabilities. At the time of writing, the
FLUX family of models had not been applied to synthetic medical
data generation because of the expensive fine-tuning costs and the
recency of the model.

The FLUX-dev variant of the FLUX family was shown to be
superior to the Stable Diffusion family by Marioriyad et al. [9].
In addition to testing the latent diffusion-based models, DALL-E3
[22], a leading closed source transformer-based model, was tested,
and FLUX demonstrated similar performance while outperforming

Stable Diffusion on every metric [9]. In addition to this, a 1.58
bit quantization of FLUX [14] showed better performance than
Stable Diffusion XL despite less accurate weights on both the T2I
CompBench [30] and GenEval [47] data sets.

2.5 Image Evaluation Metrics

SSIM [45] measures the difference between images by computing
the luminance, contrast, and structure of each image. The lumi-
nance, contrast, and structure capture the differences in image
brightness, pixel intensity, and pixel spatial interdependencies, re-
spectively. This allows the SSIM metric to offer a more human-
visible evaluation of image quality, in contrast to traditional pixel-
based similarity metrics [56], while maintaining good performance
due to simple mathematical formulation and ease of parallelization.
This has made the metric a popular and widely used metric in the
field of computer vision [20], making it an important metric to re-
port. However, SSIM is sensitive to spatial scale selection [28][10].
A widely used variant of SSIM that addresses this sensitivity is MS-
SSIM [59], which extends the SSIM metric by creating weighted
mean SSIM scores across several resolutions. This allows many dif-
ferent scales to be captured in the final score, a key factor present
in the data set which had a wide variety of resolutions present.

MMD is a distribution distance metric that measures the proxim-
ity of two probability distributions by mapping the distributions to
reproductive kernel Hilbert spaces, where comparisons are more
flexible due to the kernel being freely chosen, and trying to min-
imize the mean deviance between the source and target domains
[43][8]. Thus, reducing the difference between the probability distri-
butions. A key advantage is that MMD makes minimal assumptions
about the input data, which enables the metric to be used in a wide
variety of applications [4]. This flexibility is useful for adversarial
medical data.

2.6 Summary

In summary, several issues were identified with previous approaches
to the creation of synthetic medical data. Most important of which
is the fact that previous approaches see a decrease in classification
accuracy when training CAD models on pure synthetic data com-
pared to pure real data and that previous approaches were unable to
increase CAD classification accuracy to human-level accuracy even
when data mixing was employed. Therefore, a clear need for models
that can produce more realistic and diverse synthetic images arises.
One potential solution to this is large pre-trained latent-diffusion
models such as the SDXL and FLUX models, which were shown to
be experimentally and theoretically superior in image generation
by previous research, when compared to VAE- and GAN-based
approaches.

3 Methods

This section discusses the methods performed to address the afore-
mentioned issues with previous approaches to synthetic medical
data generation by describing the data preprocessing and splitting
procedure, the image evaluation metrics chosen, the GAN-based



Figure 1: Figure showing a LAT radiograph image for an
elbow exhibiting both supracondylar fracture and soft tis-
sue swelling (left) and the image mask drawn for the supra-
condylar fracture, drawn around the humerus (right). The
generated label for this image read as "A lateral x-ray of an el-
bow displaying soft tissue swelling, supracondylar fracture".
Note that the mask was specifically drawn to cover the supra-
condylar fracture and a second separate image mask had
been drawn over the entire elbow for the soft tissue swelling
pathology.

method training procedures in general, and justifying the hyper-
parameter choices for the SDXL and FLUX models. Please see the
appendix for the GAN-based model architectures and their training
hyperparameters (Table 4, Table 5, and Table 6).

3.1 Data Set Preprocessing

In computer vision, applying transformations to images before they
are used to train a model is a common and crucial step in the learn-
ing process. Contrast Limited Adaptive Histogram Equalization
(CLAHE) is a commonly applied image transformation that is of-
ten applied to both machine- and human-based medical imaging
tasks due to the effective local image contrast enhancement of the
transformation [36] [12] [32] [17]. CLAHE is able to reveal fine de-
tails that have been obscured by poor illumination or low contrast
inherent to radiograph images while avoiding noise amplification.
The method has also shown good results in the field of medical clas-
sification, particularly knee osteoarthritis radiographs [17], brain
MRIs [48], and diabetic retinopathy images [36]. Therefore, CLAHE
was chosen as a suitable image transformation and was applied
to the entire data set of 2783 elbow radiographs. In addition to
CLAHE, an automated cropping check was performed to resize any
images that incorporated additional unnecessary padding around
the radiographs, images were checked for color inversion, all im-
ages were resized to 1024x1024 for uniformity, and anteroposterior
(AP) and lateral (LAT) radiographs were separated to ensure data
set uniformity and allow smoother training of the models.

After the above steps were performed on the elbow radiographs,
the image labels were automatically generated in natural language
to retrain the latent diffusion model text encoders, and the image
masks were hand-drawn according to the general area in which each
pathology occurred for a total of 3017 unique masks (see Figure 1 for
an example). The image labels followed the format of "A [LAT/AP]

x-ray of an elbow displaying [pathology 1], [pathology 2], ..". This
meant that for a single elbow radiograph with several pathologies
present, a distinct mask was drawn for each pathology, regardless of
any pathologies that share the same area. For example, radiographs
that showed only joint effusions and olecranon fractures would have
two distinct masks that encompass the elbow joint. This allowed for
more efficient use of data, due to the natural variations present in
the masks for the same area of the same radiograph and allowed the
models more training runs over the more complex multi-pathology
masks. A crucial consideration that was made due to the low data
situation. The masks varied in terms of size, shape, the amount
of soft tissue captured, and the amount of background, non-tissue
captured. Non-tissue portions of the images were chosen to be
included as a subset of the image masks because they forced the
models to learn and generate the edges of the elbow, rather than
solely the interior tissue. The following is a list of pathologies
organized by where the masks were drawn for radiographs with
that pathology.

3.1.1 Joint Area.

e Joint effusion

Medial epicondyle displaced
Lateral epicondyle displaced
Olecranon fracture

Radial head fracture

Radial head subluxation

3.1.2  Humerus (Upper Arm).

e Distal humerus fracture
e Supracondylar fracture

3.1.3 Radius and Ulna (Forearm).

e Proximal ulnar metaphysis fracture
e Proximal radial fracture

3.1.4 Whole Arm.

e Elbow dislocation anterior
e Elbow dislocation posterior
o Soft tissue swelling

3.1.5 Normal Elbows. Normal elbows were any elbows without
pathologies present; in other words, radiographs displaying a healthy
elbow. Masks were drawn in an even distribution of the joint, upper
arm, forearm, and whole arm for normal elbows.

Finally, the data set was divided into a training and test data set,
with 30% of the total data being used for an out-of-sample test data
set and the remainder being used for the training data set. Crucially,
the test images were sampled such that multi-pathology images
were not repeated in the training data set by having any multi-
pathology image in the test data set count for multiple pathology
classes and completely removing it from the test data set. Please,
see Table 3 for a breakdown of the train and test data sets with their
relative pathology counts. Of particular interest are the pathologies
that suffer from the lowest data, namely elbow dislocation poste-
rior, proximal ulnar metaphysis fracture, radial head fracture, and
radial head subluxation. These low-data pathologies are due to the



rareness of these types of injuries in the real world and are particu-
larly difficult for both classification models to accurately classify
and generative models to accurately replicate due to the small num-
ber of them present in the training data set. These pathologies were
treated as equal in the metric calculation, and a full analysis of
individual pathology scores was not feasible due to the page limit.

3.2 Metrics

The metrics chosen for the quality evaluation were SSIM, MS-SSIM,
and MMD. These metrics were chosen because (1) SSIM is a uni-
versal, widely applicable metric that has been widely reported in
previous literature [20]. (2) MS-SSIM addresses the scaling sensitiv-
ity issue present in SSIM [59], a key feature for an accurate com-
parison between the GAN-based and latent diffusion-based models
that generated images at different resolutions. And (3) MMD is
better equipped than the more commonly used Fréchet Inception
Distance (FID) for small medical data sets with non-normally dis-
tributed image features, primarily due to the fact that MMD does
not make assumptions about the shape of the data distributions as
opposed to FID [4]. Alternative metrics such as Feature Similarity
Index Measure were observed to never score synthetic-real image
pairs below 0.5 (even when comparing random noise to real im-
ages), meaning that this metric is unsuitable for showing whether
a generative model that starts with random noise is learning (such
as a latent diffusion model), and Information Content Weighted
Structural Similarity Index and Peak Signal-to-Noise Ratio both
saw large score changes for minor image modifications. MMD was
computed using a radial basis function kernel and using a pre-
trained ResNet-50. In addition to these metrics, 50 random images
were subjected to manual review from a non-expert for each of
the models (50 per 20 epochs for the diffusion models) to iden-
tify obvious image generation issues such as blurriness. A more
comprehensive and objective manual review was not possible due
to resource limitations and ethical concerns. The selected metrics
were computed between the real images in the test data set and
the synthetic image pairs generated based off the real images in
the test data set. Only one synthetic image per real testing sam-
ple was generated in order to ensure uniformity. A key note and
potential limitation of this study was that no extensive statistical
tests were not undertaken; however, this was infeasible due to time
constraints and the large amount of time required to implement the
GAN-based models and fine-tune and conduct inference on the la-
tent diffusion-based models. A classification model was not trained
on synthetic data because distribution-based metrics require a large
test data set for objective evaluation and for compatibility with the
GAN-based methods. This reduction in training data would lead
to poorer generative performance. Therefore, it was viewed that
future research should train a classification model, where the test
data set can be formed in a manner that makes better use of the
available data by complementing the mask generation ability of the
latent diffusion-based models. An example of such an approach is
to generate synthetic fractures off the normal elbows in order to
test the models.

3.3 GAN-Based Methods

Following the implementation of Prezja et al. [17], a WGAN-GP was
developed due to the promising performance of the model for knee
osteoarthritis radiographs. The model was adapted to be trained
on elbow radiographs in a non-masked, non-labeled fashion. This
is due to the architecture of the WGAN-GP, which does not inher-
ently support masked or labeled data. This meant that a unique
WGAN-GP had to be trained and sampled for each pathology. In
addition to this, separate models were trained for LAT and AP im-
ages, with right-oriented radiographs being mirrored across the Y
axis for additional data consistency. Since WGAN-GP represented
a substantial improvement in the image-generating capabilities of
the vanilla GAN [3][21], it was decided that this model would serve
as a suitable baseline model from which the other models would
be compared for hyperparameter choices. The WGAN-GP was a
suitable choice because it is widely researched, is easier to train
than a vanilla GAN due to the reduced chance of mode collapse
and greater training stability, and the other models were expected
to have outperformed the simpler WGAN-GP model in terms of
image generation capabilities. Please, see Table 4 for a breakdown
of the model architecture and hyperparameters.

Due to issues experienced with mode collapse around epoch 30
when replicating the AC-GAN architecture implemented by Sun
et al. [19], the AC-GAN was developed following a mixed imple-
mentation of Sun et al. [19] and Dhawan and Nijhawan [7]. The
TAC-GAN was derived from the AC-GAN model to ensure a fair
comparison, and following the implementation by Gong et al. [35],
the twin auxiliary classifier was added. These models were trained
in two stages: (1) a hyperparameter search stage where the hy-
perparameters were tuned to achieve the most realistic images
according to the non-expert evaluation, and (2) hyperparameters
were selected based on the previous results and the final models
were trained using image labels but not masks. This process was
necessary because both AC-GAN and TAC-GAN are sensitive to
input and output resolution and class distributions in data sets with
high intraclass overlap [53] [35], such as medical data sets with
multi-pathology images.

All GAN-based models were developed using the Pytorch frame-
work, trained for 4000 epochs on Nvidia L40 graphical processing
units, and checkpointed and sampled on the test set every 500
epochs. TAC-GAN required 52 hours, AC-GAN required 48 hours,
and each WGAN-GP model required 32 hours of training. The im-
ages were trained and generated at 256x256 pixels because larger
values led to a significantly higher chance of mode collapse among
the GAN-based models. Subsequently, the synthetic images were
resized to 1024x1024 pixels using bilinear interpolation and passed
on to the SSIM, MS-SSIM, and MMD metrics for quality evaluation.
The generated images were resized to avoid information loss in the
test images, to standardize metric input size across generation meth-
ods, and to ensure a more even comparison with the diffusion-based
models. However, it should be noted that this may have artificially
inflated the GAN-based SSIM and MS-SSIM metrics because bilinear
interpolation smooths noise and increases local pixel correlations.



Figure 2: A figure showing two sample normal (healthy) LAT
elbows. Despite the fact that both of these elbows are left-
oriented, the right image is slightly brighter than the left
image, the elbows have different amounts of soft tissue, dif-
ferent bend angles, different bone orientations, and joint
locations of the elbows are different.

This should have been offset by the fact that bilinear interpola-
tion was a conservative upsampling method that preserves relative
structural content without adding high-frequency hallucinations
that would have biased the metrics.

3.4 Diffusion-Based Methods

Both the SDXL and FLUX models were fine-tuned using the open
source OneTrainer tool [52]. Respectively, the inpainting and fill
(masked) versions of the models were chosen because fine-tuning
the models based on unconditional image generation would have
resulted in an inability to extract synthetic labels, which is crucial
for evaluating the ability of a model to generate specific patholo-
gies, and pure text-to-image (prompted) generation would not have
benefited from individual image context. This would have caused
the model to potentially produce less realistic images due to noise
present in the data, such as poorly positioned body parts or un-
evenly distributed body part positions. An example of such was
right- and left-oriented elbows, where WGAN-GP required an addi-
tional check to flip right-oriented radiographs (training dedicated
right- and left-oriented models was infeasible due to the small
size of the data set). However, this was only able to address the
extreme case of completely inverted radiographs, and not more
minor variations such as bone orientation, joint position, elbow
bend angle, amount of soft tissue, or image brightness. Please see
Figure 2 for an example of this, where it is shown that the two
elbows have different overall brightnesses, amounts of soft tissue,
bend angles, bone orientations, and joint positions. Furthermore,
numerous radiographs had unrelated body parts present, such as
another arm or the shoulder and ribs of the patient. By including the
overall image context, as was with mask-based image generation,
the model is shown crucial information which would allow it to
determine the overall image brightness, certain bone orientations,
and the amount of soft tissue expected for the synthetic image.
Therefore, generating a higher quality image. An additional benefit
of mask-based fine-tuning is that the model is allowed to focus on
the specific areas that are most important for generating realistic
synthetic pathologies, such as the joint area for the joint effusion

pathology. In contrast to unmasked fine-tuning, as is the case for
all of the GAN-based models, where these details would have to
be learned alongside unimportant details such as the positions of
the lead markers (the 'L’ and 'R’ letters used to indicate the left
or right side of a patient’s body, which the GAN-based models
visibly struggled with). Thus, mask-based models were selected for
fine-tuning and testing. However, it should be noted that no tests
were conducted for the comparison of the mask-based and pure
text-to-image models due to time constraints and the length of time
required to fine-tune both models.

At the time of writing, the author was unaware of any published
studies discussing and testing different fine-tuning hyperparam-
eter settings for either the SDXL or FLUX models. Therefore, the
justifications for the hyperparameters chosen in Table 7 were en-
tirely based on the consensus of the community on the choices
of hyperparameters. Experiments were performed for critical hy-
perparameters such as the learning rates, data types, batch sizes,
and optimizers, but due to time constraints and the length of time
required to fine-tune the models, extensive tests were infeasible.
A large number of hyperparameters were kept the same between
SDXL and FLUX to ensure a fair comparison and to reduce the
amount of fine-tuning undergone. The learning rates were tested
at the values of 1 x 10~3 and 5 x 10~%; however, both showed good
metric scores at the level of 20 epochs but began to drop thereafter.
This was an indication that the learning rate was too high and was
causing training instability. A learning rate of 1 x 107> showed
good metric curves and was a good value according to community
consensus. Smaller learning rates were not explored due to time
constraints and the need for fast convergence due to the small train-
ing data set. The data types did not affect the model scores in any
meaningful way; however, since SDXL was a smaller model, it was
able to be trained at float32 precision without a significant increase
in training time. FLUX was set to bfloat16 precision because the
model was unable to fit in the available memory at higher precision
values. This compromise was compensated by the stochastic round-
ing hyperparameter, which is known to provide better training
results for precision levels below 32 bits, such as bfloat16 [49] [42]
[38] [37] [40]. The batch size of 4 was chosen to reduce the training
time, as for FLUX it was found that smaller batch sizes lead to an
increase in training time, but larger batch sizes such as 16 led to
significantly worse-looking images. This was because those batch
sizes were too large with respect to the size of the data set, leading
to convergence on sharp, less generalizable minima within the loss
landscape, due to the large batch size causing the optimizer to make
big updates to the model parameters. The Adafactor optimizer was
found to produce images of better quality and use less memory than
the AdamW optimizer after 20 epochs of training with a non-expert
visual analysis and was therefore the chosen optimizer for both
models.

Both SDXL and FLUX were fine-tuned up to 200 epochs and
sampled every 20 epochs using a random seed (including the 0th
epoch before fine-tuning) for approximately 200 and 360 fine-tuning
hours, respectively, on Nvidia L40 graphical processing units. Sub-
sequently, both models were fine-tuned for an additional 20 epochs
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Figure 3: Figures showing the performance of the SDXL (left) and FLUX (right) models. Each figure shows the performance in
terms of the SSIM and MS-SSIM scores (upper left) and the logarithmic MMD score using ResNet-50 as the feature extractor
(upper right), as the fine-tuning epoch increases. The dashed lines represent the metric scores for images with corresponding
masks that were entirely made up of random noise, forming baseline minimum expected scores for the corresponding metric.
The sample images generated from the one shown in Figure 1 are displayed for each model with the fine-tuning epoch increasing
from left to right and from top to bottom (below). Note that the Epoch 220 results were produced after the model was fine-tuned

with a boosted learning rate.

at a boosted learning rate of 1 X 10~# to determine whether a per-
formance ceiling had been reached.

4 Results

This section provides the main results and discusses some key data
points produced. The WGAN-GP, AC-GAN, TAC-GAN, SDXL, and
FLUX results are briefly discussed in that order. Interpretations and
explanations of these results follow in Section 5. Note that higher
scores are better for SSIM and MS-SSIM and lower scores are better
for MMD.

4.1 GAN-Based Results

As shown in Figure 4, the WGAN-GP demonstrated steady but
slow learning. SSIM and MS-SSIM increased steadily from ~0.281
to a maximum value of ~0.292 and ~0.387 to a maximum value
of ~0.402, respectively, as the training epochs increased. How-
ever, MMD showed more unstable learning, which varied between
~2.463 x 107% and ~3.835 x 10™%. From the visual analysis, the
WGAN struggled to produce highly realistic images even at the
4000 epoch level. As shown in the sample images displayed in Figure
4, the model learned to create recognizable but completely unrealis-
tic radiographs. Although the overall structure is correctly learned,
several issues, such as blurriness, bone merging, unrealistic bone
shapes, unrealistic soft tissue, and few recognizable pathologies,
are present.

The AC-GAN and TAC-GAN results shown in Figures 5 and
Figure 6, respectively, depict the SSIM and MS-SSIM scores immedi-
ately decreasing before plateauing as training epochs increase. SSIM
for ACGAN decreased from a maximum of ~0.287 to a minimum of
~0.261 and MS-SSIM decreased from a maximum of ~0.407 to a min-
imum of ~0.381. SSIM for TAC-GAN decreased from a maximum
of ~0.318 to a minimum of ~0.299 and MS-SSIM decreased from a
maximum of ~0.426 to a minimum of ~0.392. Both models showed
unstable MMD scores, AC-GAN varied between ~1.373 x 10~* and
~6.369 X 10~* and TAC-GAN varied between ~2.599 X 10~* and
~5.040 x 10~%. Visual analysis showed that both AC-GAN and TAC-
GAN suffered from similar issues to the WGAN-GP models, with
generated images displaying the same realism issues mentioned
above. However, of particular note is the generational instability of
AC-GAN, as shown by Epoch 3000 in Figure 5, where the generation
seed had a large impact on the generated image style and could
result in vastly different elbow orientations for separate training
epochs. TAC-GAN did not suffer from this and was able to accu-
rately maintain similar elbow orientations between training epochs,
as shown in Figure 6.

4.2 Diffusion-Based Results

Upon the visual analysis, SDXL was able to generate images with
less blurriness than any of the GAN-based models even at 20 epochs
of fine-tuning. Although the unfine-tuned model (Epoch 0) created
clear images, noise was present in the images in terms of bone



Metric Model Best Score  Noise Improvement
WGAN-GP 0.292 3.506
AC-GAN 0.287 3.439
SSIM TAC-GAN 0.318 3.813
SDXL 0.815 1.109
FLUX 0.868 1.180
WGAN-GP 0.402 3.965
AC-GAN 0.407 4.011
MS-SSIM  TAC-GAN 0.426 4.204
SDXL 0.847 1.167
FLUX 0.876 1.207
WGAN-GP  2.463 x 1074 26.380
AC-GAN 1.373x 1074 47.311
MDD TAC-GAN 2599 x 10™* 25.001
SDXL 1.705 x 107 172.168
FLUX 6.914 x 1076 424.483

Table 1: Table showing the respective maximum metric scores
and factor of improvement over entirely random noise im-
ages (for the GAN-based models) or the random noise-filled
masks (for the latent diffusion-based models) for each model.
Note that for SSIM and MS-SSIM improvement implies an
increase and MMD improvement implies a decrease. All final
values were rounded to three decimal places and are thus
approximations of the actual observed value.

merging, unrealistic bone shapes, unrealistic soft tissue, few rec-
ognizable pathologies, and nonsense items such as unrelated body
parts or other unrelated objects being added in place of the mask.
Furthermore, it was observed that while fractures were more real-
istic (less blurry) after 20 epochs of fine-tuning, SDXL struggled
with blending the mask area at fine-tuning epochs greater than 20.
This was supported by the SSIM and MS-SSIM metrics which, as
shown in Figure 3 (Figure 7 shows a full-sized version of this figure),
reached their maximum values after 20 epochs of fine-tuning at
~0.815 and ~0.847, respectively. Both metrics saw an immediate
decrease after 20 epochs, with SSIM showing notable instability.
Furthermore, MMD reached its minimum of ~1.705 X 10~ in 20
epochs of fine-tuning. It should be noted that at all epochs greater
than 20, the SSIM, MS-SSIM, and MMD scores were similar or worse
than those of even the unfine-tuned model. Another observation is
that the boosted learning rate saw worse performance in the visual
analysis, SSIM, and MS-SSIM with an insignificant improvement in
the MMD score.

In addition to SDXL, FLUX generated visually superior images to
the GAN-based models while seeing similar issues with the unfine-
tuned model to SDXL. Notably, FLUX saw no blending issues at
epochs greater than 20 with image realism improving as the number
of fine-tuning epochs increased. This is supported by the SSIM and
MS-SSIM metrics, where a constant and steady improvement from
~0.843 to ~0.868 and ~ 0.876, respectively, can be seen in Figure 3
(Figure 8 shows a full-sized version of this figure). The MMD score
decreased dramatically to ~6.914 x 10~° at 40 epochs of fine-tuning

before plateauing with some variation between ~1.168 x 107> and
~8.106 x 107%. It should be noted that fine-tuning with the higher
learning rate immediately led to worse SSIM, MS-SSIM, and MMD
scores.

5 Discussion

This section will explain the reasons for, meaning of, and impacts of
the aforementioned results. Initially, the results of the GAN-based
methods are discussed and compared with each other, then the
results of the latent diffusion-based methods are discussed and com-
pared, and finally the GAN-based and latent diffusion-based results
are compared with each other, and the impact of the findings is
discussed.

Is it clear from Section 4.1 that WGAN-GP demonstrated the
best learning curve. The model showed a steady increase in metric
scores as the number of training epochs increased. Unlike AC-GAN
and TAC-GAN which showed decreases in their metric scores past
500 training epochs, an indicator that the models were overfitting
to specific classes and suffering from mode collapse. This may be
explained as the WGAN-GP being able to overcome the issue of
mode collapse and ensure training stability through the use of the
Wasserstein distance, which provides smoother and more meaning-
ful gradients even for distributions that may not overlap, and the
enforcement of the Lipschitz constraint through gradient penalties,
which avoids the issues of weight clipping [3] [21]. The introduc-
tion of an auxiliary classifier in AC-GAN likely tended to favor
generating samples that the classifier found easiest to classify, as
observed similarly by Gong et al. [35]. Despite the addition of a
second (twin) auxiliary classifier in TAC-GAN, it was observed that
TAC-GAN can collapse and struggle with class-conditional diver-
sity similar to AC-GAN, which has been confirmed by previous
empirical evidence [2]. However, WGAN-GP did not improve by
a large amount in SSIM or MS-SSIM as training epochs increased,
with the MMD score demonstrating notable instability and little
learning. This may be due to the model being underparameterised
or the critic growing too strong, causing the generator to receive
weak gradient signals. These findings, along with the fact that the
GAN-based models showed a tendency to mode collapse at training
resolutions greater than 256x256 pixels, are indicators in support
of the research question asked in Section 1.1. That is, it shows that
WGAN-GP, AC-GAN, and TAC-GAN may be too unstable when
trying to learn patterns in complex adversarial medical data.

As shown in Table 1, TAC-GAN showed the best performance
in terms of SSIM and MS-SSIM and the greatest improvement over
pure-noise images for these metrics. This means that TAC-GAN
produced images that were generally more similar to those found
in the test data set than those produced by WGAN-GP or AC-GAN
in terms of structural content, contrast, and luminance. Addition-
ally, TAC-GAN showed a 3.813 factor of improvement for SSIM
and a 4.204 factor of improvement over pure random noise images,
with WGAN-GP and AC-GAN showing similar improvements. This
implies that the three models are capable of producing structured
images rather than garbage noise and is an indicator that the GAN-
based models have learned the underlying patterns in the training



data to some extent. This finding validates the methods performed
in Section 3 by showing that the models were able to learn to an
extent, which means that they were implemented correctly. The
success of AC-GAN over WGAN-GP may be attributed to the ad-
dition of the classifier, allowing the model to incorporate more
information during generation [53] and the success of TAC-GAN
over AC-GAN may be attributed to the additional twin classifier suc-
cessfully increasing sample class diversity, as has been theoretically
shown in previous literature [35]. This finding supports previous
literature [53][35], where it was expected that TAC-GAN would
outperform AC-GAN and AC-GAN would outperform WGAN-GP.
This serves as a further justification that the models were imple-
mented correctly in Section 3. However, the SSIM and MS-SSIM
scores for all GAN-based models are low, as shown in previous
literature [55]. This means that the models, though outperforming
pure noise, generate images that share little structural content with
the test data set and fail to preserve perceptually important features
at multiple resolutions. Therefore, the produced images are differ-
ent in both overall structure and fine detail from the real images,
further supporting the research question and the hypothesis that
these GAN-based models are too simple to accurately model the
complex relationships shown in adversarial medical data.

Despite the SSIM and MS-SSIM scores, the MMD score demon-
strated more favorable results for the GAN-based models, with AC-
GAN scoring the best with 1.373 x 10™%. This represented nearly
a two-time decrease over WGAN-GP and TAC-GAN in the MMD
score and means that AC-GAN produced images with a distribution
that was closer to the test image distribution than WGAN-GP or
TAC-GAN. This contrasts with previous literature [35], which men-
tioned that TAC-GAN outperformed AC-GAN in terms of MMD
when tested on the overlapping MNIST data set; however, this dis-
crepancy may be due to training instability caused by the addition
of the twin classifier, as previously reported [31]. This further sup-
ports the research question by demonstrating that TAC-GAN may
be too unstable during training to create realistic synthetic medical
data. All GAN-based models produced good near-zero scores for
MMD, which is in contrast to the SSIM and MS-SSIM metrics, where
they scored poorly. This is because the SSIM and MS-SSIM metrics
are pixel- and structure sensitive, punishing local misalignments,
blur, and missing fine detail. While the MMD measures distribu-
tional matches in the kernel space, which may be insensitive to
local defects. Therefore, these results have shown that although
WGAN-GP, AC-GAN, and TAC-GAN can learn and match the over-
all underlying data distribution, the models are unable to represent
fine details and produce non-blurry images. This is visible in Figure
4, Figure 5, and Figure 6, where all three models were able to create
rough elbow shapes with correct coloring for the background, soft
tissue, and bones, but clearly produce blurry images that lack fine
details, such as fracture lines.

From the results reported in Section 4.2 and as shown in Figure
3, FLUX demonstrated a better learning curve than SDXL. This is
justified by SDXL reaching optimal scores for SSIM, MS-SSIM, and
MMD at 20 epochs of fine-tuning and then plateauing or showing
instability. Instead, FLUX shows a smooth and clear improvement

as the fine-tuning epochs increase for the SSIM and MS-SSIM met-
rics; however, the MMD score plateaued after 40 epochs. The better
learning curve demonstrated by FLUX is due to the model being
larger in complexity and size, incorporating numerous state-of-
the-art latent diffusion generation improvements over SDXL. This
allowed for greater flexibility of the model to more accurately fit the
underlying pattern. It should be noted that this issue may be caused
by either a performance ceiling being reached at 20 epochs or by the
learning rate being too high for SDXL. Due to the lack of research in
the field of SDXL fine-tuning at the time of writing, future research
should test even lower learning rates than the one mentioned in
Table 7. The plateaued MMD score for FLUX may be explained as
the model having reached a near-minimum possible value for the
score. The fact that the MMD score did not keep decreasing while
the SSIM and MS-SSIM scores continued to increase is an indicator
that the model was able to maintain a degree of diversity in the
generated samples, rather than overfitting, which would be caused
by the distribution of the generated radiographs starting to match
the distribution of the real radiographs too closely, causing MMD
to continue improving while the SSIM and MS-SSIM metrics would
start to worsen. Therefore, this should be viewed as a positive in-
dicator of the model successfully generalizing. It should be noted
that when trained to 220 epochs with the boosted learning rate, the
model saw a large decrease in the SSIM and MS-SSIM scores and
an increase in the MMD score. This is a clear indication that the
model was traversing a suitable minimum in the search space, as
the higher learning rate caused it to step out of the minimum and
produce worse SSIM and MS-SSIM scores. Therefore, a performance
ceiling has not yet been reached, and further fine-tuning epochs
may have resulted in more realistic images in terms of SSIM and
MS-SSIM. These findings support the research question by showing
that the FLUX model is better able to learn the underlying patterns
in the radiographs than SDXL due to the smoother learning curves
demonstrated.

As seen in Table 1, FLUX outperformed SDXL in terms of SSIM,
MS-SSIM, and MMD. FLUX also showed greater improvements
over images with noise-filled masks, with the MMD score for FLUX
being notably better than SDXL. This means that FLUX had greater
success in generating radiographs that matched the test radiographs
in terms of fine image details, contrast, luminance, and individual
and general radiograph structural content, across multiple scales.
This is because of both the above mentioned reasons that SDXL is
a smaller and simpler model than FLUX and the notable difficulty
SDXL experienced in blending the provided radiograph with the
filled image mask. As shown in Figure 9, FLUX is able to generate ra-
diographs that have better image blending and demonstrate greater
bone, soft tissue, joint, and fracture realism. Despite this, both
models showed greater performance than the random noise-filled
radiographs, which is an indicator that the models have learned the
underlying patterns in the data. The most notable improvement is
in the MMD score, where SDXL and FLUX demonstrated factors
of improvement of 172.168 and 424.483, respectively. In addition,
both models scored highly (scores greater than 0.8) in the SSIM
and MS-SSIM metrics, implying that they were able to produce
radiographs of high fidelity, low blurriness, high perceptual quality,
and radiographs that matched the structural alignment of the test



images. The low, near-zero MMD scores meant that the distribu-
tions of the synthetic radiographs were very closely matched to
those of the test radiographs. This may be explained in part due to
the fact that the latent diffusion-based models only filled the mask
space, without affecting the remainder of the radiograph, but also
due to the increased complexity of both models, in terms of both
the number of parameters and the state-of-the-art latent diffusion
improvements incorporated, over previous approaches to diffusion-
based synthetic medical image generation [33][1].

Although it is incorrect to directly interpret the SSIM, MS-SSIM,
and MMD metrics shown in Table 1 regarding the comparison
between the latent diffusion-based and GAN-based models, other
implicit metrics such as the performance of each model over random
noise and the training curves provide useful insights for compar-
isons to be made. Although the GAN-based and latent diffusion-
based models generated radiographs at different resolutions and the
GAN-based models generated entire images rather than filling in a
mask like the diffusion models, the shapes of and characteristics
demonstrated by the training or fine-tuning plots are independent
of these factors. Therefore, it should be said that given the above
results, the GAN-based methods demonstrated poor learning due
to training instability, mode collapse, and poor generation quality.
This is in contrast to SDXL and FLUX which demonstrated good
generational ability and particularly FLUX, which demonstrated
superior performance to SDXL across all metrics and produced
smoother training curves. Due to the differences between mask-
based and full-image generation, the noise improvement scores are
biased towards the GAN-based models, and the absolute metric
scores are biased towards the diffusion-based models. This is be-
cause generating an entire image with a competent method should
result in a much greater improvement over an entirely random
noise image, because even learning the underlying pattern to a
small extent will result in large improvements over random noise.
This is in opposition to mask-based image generation, where the
difference between a competent method accurately filling the mask
will be diluted by the remainder of the image, which is shared when
noise is only used to fill the mask. Therefore, it was expected that
the GAN-based models showed greater noise improvement factors
for the SSIM and MS-SSIM metrics; however, it was not expected
that SDXL and FLUX demonstrated superior performance with
respect to the MMD metric. This indicates that despite the MMD
noise improvement factor being biased towards the GAN-based
methods, the latent diffusion-based methods were able to leverage
the overall image context to generate synthetic radiographs that
were orders of magnitude closer to the test radiograph distribution
than the GAN-based models. This may be attributed to the better
use of information of the masked latent diffusion-based models;
incorporating both labels and individual mask context in order to
generate radiographs that are focused, very close matches to the
real ones, and further emphasizes the likelihood that the GAN-
based models suffered from mode collapse. Therefore, this is clear
evidence that latent diffusion-based models are better suited for
learning the distributions of real medical data.

A key criticism may be raised at this point; that it is unfair
to compare the GAN-based methods to the latent diffusion-based

methods because the latent diffusion-based methods had to learn
and generate smaller areas than the GAN-based methods. However,
it should be said that the latent diffusion-based models, while only
generating images within the mask area, are, in fact, incorporating
more information during the learning process. That is, the latent
diffusion-based models were able to reduce the amount of noise
learned by focusing specifically on key areas of the radiographs
using the image masks. Furthermore, proving whether these la-
tent diffusion-based models are superior to GAN-based methods
was not the purpose of this study and has been covered in Section
2. Recall that the purpose of this study was to identify whether
masked SDXL and FLUX are better suited for synthetic medical
data generation than the unmasked GAN-based methods.

In summary, it has been presented and discussed that the GAN-
based models saw several issues when trained on adversarial medi-
cal data. Namely; training instability, mode collapse, poor genera-
tion resolution, blurriness, and unrealistic radiograph generation.
These issues were overcome by the latent diffusion-based models,
which demonstrated superior learning curves and improvements
over noise for the MMD metric, due to the better use of information
and focused generation provided by the image masks. Further-
more, it was shown that of the latent diffusion-based models, FLUX
demonstrated higher scores across all metrics and learning curves
superior to those of SDXL. These results provide a critical path
forward for future research by providing fine-tuning schemes for
the state-of-the-art SDXL and FLUX models for the purpose of gen-
erating highly realistic synthetic images for medical classification
model training.

6 Conclusion

Statistically based machine learning models have been shown to
be suitable for the generation of synthetic medical data. Specifi-
cally, the FLUX model was identified as superior to SDXL, and both
models were shown to be superior to WGAN-GP, AC-GAN, and
TAC-GAN in terms of learning the underlying patterns in elbow
radiograph images to generate suitably realistic images for training
classification models. This has been done by training WGAN-GP,
AC-GAN, and TAC-GAN and fine-tuning SDXL and FLUX on a data
set of elbow radiographs, evaluating the generated synthetic radio-
graphs in terms of the SSIM, MS-SSIM, and MMD metrics, and then
discussing and interpreting these metrics alongside analyzing the
training curves of each model. The GAN-based models were identi-
fied to have several issues that make them unsuitable for realistic
synthetic medical image generation, and the latent diffusion-based
models were able to leverage state-of-the-art improvements over
the GAN-based models to generate highly realistic synthetic el-
bow radiographs. This study represents a technical contribution to
the field of synthetic medical data generation by providing a clear
path for future research. That is, future research should focus on
training a classification model on the synthetic data produced, the
impact that data mixing has on CAD model classification accuracy,
determining optimal fine-tuning hyperparameters for SDXL and
FLUX, and incorporating an analysis by medical experts to gauge
the realism of synthetic radiographs in a real-world setting.
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A Appendix

A.1 Table of Experiments

Number

Name

Methodology

Outcome

1

Human non-expert image evalu-
ation

A sample of 50 synthetic images
per model at specific epoch in-
tervals was manually reviewed
by a non-expert to identify obvi-
ous error areas such as extreme
blurriness.

The GAN-based models suffered
from blurriness and other real-
ism issues, SDXL struggled with
mask blending, FLUX generated
good quality images.

SSIM Metric Test

Compute and plot the SSIM met-
ric at specific training and fine-
tuning intervals

TAC-GAN produced the highest
score for the GAN-based mod-
els and FLUX produced the high-
est score for the latent diffusion-
based models

MS-SSIM Metric Test

Compute and plot the MS-SSIM
metric at specific training and
fine-tuning intervals

TAC-GAN produced the highest
score for the GAN-based mod-
els and FLUX produced the high-
est score for the latent diffusion-
based models

MMD Metric Test

Compute and plot the MMD met-
ric at specific training and fine-
tuning intervals

AC-GAN produced the lowest
score for the GAN-based mod-
els and FLUX produced the low-
est score for the latent diffusion-
based models

Table 2: Table of experiments showing the experiments performed to address the research question. Note that only one
non-expert evaluated the images due to resource limitations.



A.2 Data Set Distributions

Train Count Test Count

Pathology (% Total) (% Total)
: 60 25
Distal humerus fracture (2.83%) (2.78%)

' . ) 12 4
Elbow dislocation anterior (0.57%) (0.45%)
. . : 36 15
Elbow dislocation posterior (1.70%) (1.67%)
) ) 432 184
Joint effusion (20.39%) (20.49%)
. ) 99 42
Lateral epicondyle displaced (4.67%) (4.68%)
. . ) 66 27
Medial epicondyle displaced (3.12%) (3.01%)
45 19
Olecranon fracture (2.12%) (2.12%)
. . 34 14
Proximal radial fracture (1.61%) (1.56%)
. . 24 9
Proximal ulnar metaphysis fracture (1.13%) (1.00%)
. 17 7
Radial head fracture (0.80%) (0.78%)
. ' 17 6
Radial head subluxation (0.80%) (0.67%)
A . 215 91
Soft tissue swelling (10.15%) (10.13%)
609 261
Supracondylar fracture (28.74%) (29.07%)
453 194
Normal (21.38%) (21.60%)
Total 2119 898

Table 3: A table showing the data set breakdown for the training and test data sets by pathology. There are 14 classes in total.



A.3 WGAN-GP Architecture

Operation Kernel Strides Feature Maps BN Dropout Nonlinearity
G(z) - 256 x 1 x 1 input

Linear N/A N/A 512x16x16 vV 0.0 ELU(xx=0.2)
Upsample + Conv2D 3x3 1x1 256x32x32  V 0.0 ELU(a=0.2)
Upsample + Conv2D 3x3 1x1 128x64x64 vV 0.0 ELU(a=0.2)
Upsample + Conv2D 3x3 1x1 64x128x128 V 0.0 ELU(a=0.2)
Upsample + Conv2D 3x3 1x1 32x256x256 v 0.0 ELU(=0.2)
Upsample + Conv2D 3x3 1x1 1x256x256  x 0.0 Tanh

D(x) - 1 x 256 x 256 input

Conv2D 5x5 2x2 64x128x 128 «x 0.25 ELU(a=0.2)
Conv2D 5x5 2x2 128 x 64 x 64 x 0.25 ELU(a=0.2)
Conv2D 5x5 2x2 256 x 32 x 32 x 0.25 ELU(a=0.2)
Conv2D 5x5 2x2 512x 16 x 16 x 0.25 ELU(a=0.2)
Conv2D 5x5 2x2 512x8x8 x 0.25 ELU(a=0.2)
Linear N/A N/A 1 x 0.0 N/A
Optimizer Adam (@=0.0002, $1=0.5, f2=0.9, weight_decay=0.0001)

Batch Size 5

Epochs 4000

Table 4: Table showing the WGAN-GP Generator (G) and Discriminator (D) architectures and training hyperparameters.

A.4 AC-GAN Architecture

Operation Kernel Strides Feature Maps BN Dropout Nonlinearity
G(z,y)-256x1x1+18x1x1

Linear N/A N/A 256 x4x4 v 0.0 N/A

Upsample + Conv2D 3x3 1x1 128 x8x 8 v 0.0 LeakyReLU(ar=0.2)
Upsample + Conv2D 3x3 1x1 64x16x 16 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 32x32x32 v 0.0 LeakyReLU(ar=0.2)
Upsample + Conv2D 3x3 1x1 16 x 64 x 64 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 8x128x128 v 0.0 LeakyReLU(ar=0.2)
Upsample + Conv2D 3x3 1x1 4x256x256 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 1x256x256  x 0.0 Tanh

D(x) - 1 x 256 x 256 input

Conv2D 3x3 2x2 4x128x128 v 025 LeakyReLU(=0.2)
Conv2D 3x3 2x2 8 X 64 x 64 v 0.25 LeakyReLU(a=0.2)
Conv2D 3x3 2x2 16 x 32 x 32 v 0.25 LeakyReLU(ar=0.2)
Conv2D 3x3 2x2 64x8x8 v 0.25 LeakyReLU(a=0.2)
Conv2D 3x3 2x2 128x4x4 v 0.25 LeakyReLU(a=0.2)
Linear N/A N/A 1 x 0.0 N/A

Linear N/A N/A 18 x 0.0 N/A

Generator Optimizer Adam («=0.0005, $1=0.5, $2=0.999)

Discriminator Optimizer Adam (a=0.0002, £;=0.5, £2=0.999)

Classifier Optimizer Adam («=0.0002, $;=0.5, $2=0.999)

Batch Size 5

Epochs 4000

Table 5: Table showing the AC-GAN Generator (G) and Discriminator (D) architectures and training hyperparameters.



A.5 TAC-GAN Architecture

Operation Kernel Strides Feature Maps BN Dropout Nonlinearity
G(z,y)-256x1x1+18x1x1

Linear N/A N/A 256 x4x4 v 0.0 N/A

Upsample + Conv2D 3x3 1x1 128 x8x 8 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 64x16x 16 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 32x32x32 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 16 X 64 x 64 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 8x128x128 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 4x256x256 v 0.0 LeakyReLU(=0.2)
Upsample + Conv2D 3x3 1x1 1x256x256  x 0.0 Tanh

D(x) - 1 x 256 x 256 input

Conv2D 3x3 2x2 4x128x128 0.25 LeakyReLU(a=0.2)
Conv2D 3x3 2x2 8 x 64 x 64 v 0.25 LeakyReLU(ar=0.2)
Conv2D 3x3 2x2 16 x 32 x 32 v 0.25 LeakyReLU(a=0.2)
Conv2D 3x3 2x2 64x8x8 v 0.25 LeakyReLU(ar=0.2)
Conv2D 3x3 2x2 128x4x4 v 0.25 LeakyReLU(ax=0.2)
Linear N/A N/A 1 x 0.0 N/A

Linear N/A N/A 18 x 0.0 N/A

C(x) - 1 x 256 x 256 input

Conv2D 3x3 2x2 4x128x128 0.25 LeakyReLU(ar=0.2)
Conv2D 3x3 2x2 8 x 64 x 64 v 025 LeakyReLU(ar=0.2)
Conv2D 3x3 2x2 16 x 32 x 32 v 0.25 LeakyReLU(ar=0.2)
Conv2D 3x3 2x2 64x8x8 v 025 LeakyReLU(ar=0.2)
Conv2D 3x3 2x2 128x4x4 v 0.25 LeakyReLU(ar=0.2)
Linear N/A N/A 18 x 0.0 N/A

Generator Optimizer Adam («=0.0005, $1=0.5, $2=0.999)

Discriminator Optimizer Adam («=0.0002, £;=0.5, $2=0.999)

Classifier Optimizer Adam («=0.0002, $;=0.5, $2=0.999)

Batch Size 5

Epochs 4000

Table 6: Table showing the TAC-GAN Generator (G), Discriminator (D) and Classifier (C) architectures and training hyperpa-
rameters.



A.6 SDXL and FLUX Hyperparameters

Hyperparameter SDXL FLUX
Weight data type float32 bfloat16
Prior data type float32 bfloat16
Text encoder data type float32 bfloat16
VAE data type float32 float32
Train data type float32 bfloat16
Output data type float32 bfloat16
Output resolution 1024x1024 1024x1024
Epochs 200 200
Learning rate 1x1073 1x107°
Learning rate scheduler Constant  Constant
Batch size 4 4
Optimizer Adafactor  Adafactor
Scale parameter False False
Relative step size False False
Warm-up initialization False False
Stochastic rounding False True
Fused back pass False False
Decay rate -0.8 -0.8

Text encoder learning rate 3x107° 3% 107°
Text encoder training epochs 200 200
EMA False False
Train transformer (UNET) True True
Transformer training epochs 200 200
Unmasked probability 0.1 0.1
Unmasked weight 0.4 0.4
Normalize area loss False False
Loss weight function Constant  Constant
Gamma 5.0 5.0

Loss scaler None None

Table 7: Table showing the chosen hyperparameters for the SDXL and FLUX models.



A.7 WGAN-GP Results
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Figure 4: Figure showing the performance of the WGAN-GP model in terms of the SSIM and MS-SSIM scores (left) and the
logarithmic MMD score using ResNet-50 as the feature extractor (right), as the training epoch increases. The dashed lines
represent the metric scores for images that were entirely made up of random noise, forming baseline minimum expected scores
for the corresponding metric. The sample images shown are attempting to replicate the real radiograph shown in Figure 1 and
are displayed with the fine-tuning epoch increasing from left to right and from top to bottom (below). Note that the WGAN-GP

did not support labels or masks and the image was generated using the LAT supracondylar fracture trained model.



A.8 AC-GAN Results
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Figure 5: Figure showing the performance of the AC-GAN model in terms of the SSIM and MS-SSIM scores (left) and the
logarithmic MMD score using ResNet-50 as the feature extractor (right), as the training epoch increases. The dashed lines
represent the metric scores for images that were entirely made up of random noise, forming baseline minimum expected scores
for the corresponding metric. The sample images shown are attempting to replicate the real radiograph shown in Figure 1 and
are displayed with the fine-tuning epoch increasing from left to right and from top to bottom (below). Note that the AC-GAN

did not support masks and the image was generated using only the provided one-hot encoded label.



A.9 TAC-GAN Results
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Figure 6: Figure showing the performance of the TAC-GAN model in terms of the SSIM and MS-SSIM scores (left) and the
logarithmic MMD score using ResNet-50 as the feature extractor (right), as the training epoch increases. The dashed lines
represent the metric scores for images that were entirely made up of random noise, forming baseline minimum expected scores
for the corresponding metric. The sample images shown are attempting to replicate the real radiograph shown in Figure 1 and
are displayed with the fine-tuning epoch increasing from left to right and from top to bottom (below). Note that the TAC-GAN

did not support masks and the image was generated using only the provided one-hot encoded label.



A.10 SDXL Results
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Figure 7: Full-size figure showing the performance of the SDXL model in terms of the SSIM and MS-SSIM scores (left) and
the logarithmic MMD score using ResNet-50 as the feature extractor (right), as the fine-tuning epoch increases. The dashed
lines represent the metric scores for images with corresponding masks that were entirely made up of random noise, forming
baseline minimum expected scores for the corresponding metric. The sample images generated from the one shown in Figure 1
are displayed with the fine-tuning epoch increasing from left to right and from top to bottom (below). Note that the Epoch 220
results were produced after the model was fine-tuned with a boosted learning rate.



A.11 FLUX Results
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Figure 8: Full-size figure showing the performance of the FLUX model in terms of the SSIM and MS-SSIM scores (left) and
the logarithmic MMD score using ResNet-50 as the feature extractor (right), as the fine-tuning epoch increases. The dashed
lines represent the metric scores for images with corresponding masks that were entirely made up of random noise, forming
baseline minimum expected scores for the corresponding metric. The sample images generated from the one shown in Figure 1
are displayed with the fine-tuning epoch increasing from left to right and from top to bottom (below). Note that the Epoch 220
results were produced after the model was fine-tuned with a boosted learning rate.



A.12 SDXL Comparison To FLUX

Figure 9: Figure showing the synthetic images generated at epoch 200 by SDXL (left) and FLUX (right). Both images were
generated from the sample image shown in Figure 1. Several visual differences are present and show that FLUX produces
visually higher quality images than SDXL at higher fine-tuning epochs. Namely; synthetic image blending, bone realism, soft
tissue realism, joint realism, and fracture realism.
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