

Traffic Flow - An analysis of STGNNs through visualization

BACKGROUND

Traffic is a **highly dynamic system** containing:

- Temporal Patterns
- Spatial Patterns

Spatial Temporal Graph Neural Networks (**STGNNs**) model traffic as an evolving graph, capturing both spatial and temporal patterns 4 \rightarrow 4Current evaluation metrics (MAE, RMSE, MAPE) do not show model performance in real world scenarios

AIMS

Train and evaluate baseline models against State of the Art **STGNNs** on 3 real world traffic datasets

Temporal Models Baseline STGNNs SOTA STGNNs

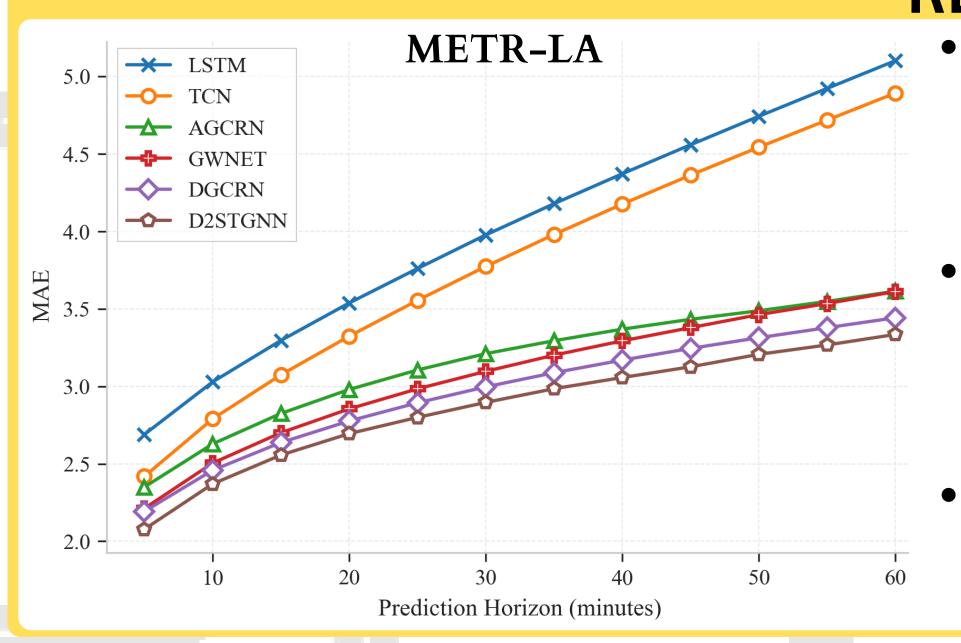
LSTM **AGCRN** DGCRN TCN Graph WaveNET D2STGNN

Develop a **Visualization Framework** to visualize observed traffic and model predictions, to **improve** evaluation interpretability by showing model performance in real world scenarios

DATASETS

Sensors placed alongside roads record the average **speed** of passing vehicles per 5 minute time period

ale a a su la susa sur Qui a sur a sur a la a sur a sur a la a sur a su			
	METR-LA	PEMS-BAY	NE-BJ
Location	Los Angeles	San Fransisco	Beijing
Samples	34 272	52 116	6 509
Sensors	207	325	500
Metric	mph	mph	kph


EXPERIMENT PIPELINE Data Preprocessing Model Development **Feature Extraction** Data Partitioning Path / Network Learned Adjacency **Model Evaluation Matrix Evaluation Analysis Use Visualization** Qualitative Evaluation ← **Generate Predictions**

FrameWork

Select Model and < 30 mph (Slow)</p> Colour Scale of 55-65 mph (Fast) **Prediction Horizon** to > 65 mph (Very Fast) observed values (lines) Sensor Markers (Prediction Error) visualize < 5 mph (Excellent) 5-10 mph (Good) and model prediction 10-20 mph (Moderate) 20-30 mph (Poor) > 30 mph (Very Poor) Mean Error: 6.86 mph errors (dots) Max Error: 42.47 mph Error dashboard of model TCN (Current) Mean Error: 6.76 mph Max Error: 46.11 mph predictions at selected High Error Sensors: 48 / 20 Max Error: 39.88 mph time step and horizon Sensor 716939.0 Prediction Error: 38.60 mph Mean Error: 5.36 mpl Max Error: 40.30 mph Actual Speed: 62.78 mph High Error Sensors: 35 / 20 Predicted Speed: 24.18 mph Max Error: 39.61 mph Location: 34.0430, -118.2172 **Traverse** through the dataset and annotate Individual sensor 2012-06-07 18:55:00 interesting events to metrics analyze Step 1037 (2012-06-07 18:55:00): High Congestion

RESULTS

- STGNNs outclass Temporal models at high congestion intersections and at longer horizons because temporal models lack the ability to model traffic propagation
 - **D2STGNN** has the **best overall performance**, but the visualization shows that it smooths out the impact of random events, limiting its real world applicability
- Sensors along the edge of the road network has the worst performance, indicating that surrounding sensors are crucial for accurate traffic prediction

