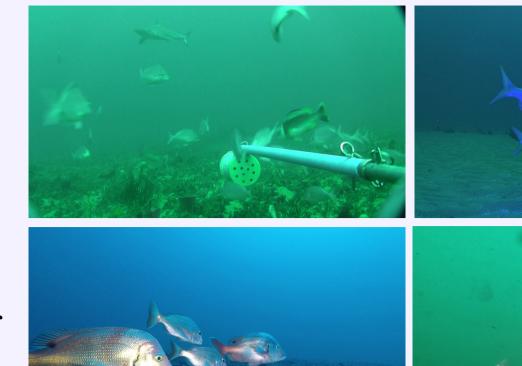
Automating the Detection & Classification Fish ID automating the Detection & Constitution of Fish from Underwater Video

Objective

- Marine biologists, fisheries managers and ecologists use underwater cameras to monitor fish population size and composition
- Current monitoring techniques require manually annotating fish in underwater footage
- Using footage collected by the South African Institute for Aquatic Biodiversity (SAIAB), we investigated DL approaches to automating this labour-intensive process

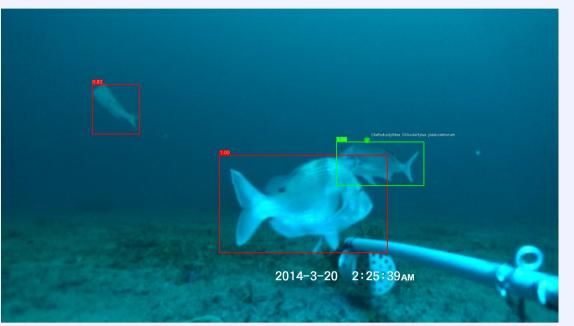


Dataset

- The dataset provided by SAIAB posed challenges for effective application of DL
- The dataset contained several hundred hours of video, however, only a small number of frames were only partially labelled

Preprocessing

- Designed software to perform semiautomated data labelling using an open source fish-detection model.
- Allowed the team to annotate ~60,000 unlabelled fish samples and ~5,000 labelled fish samples



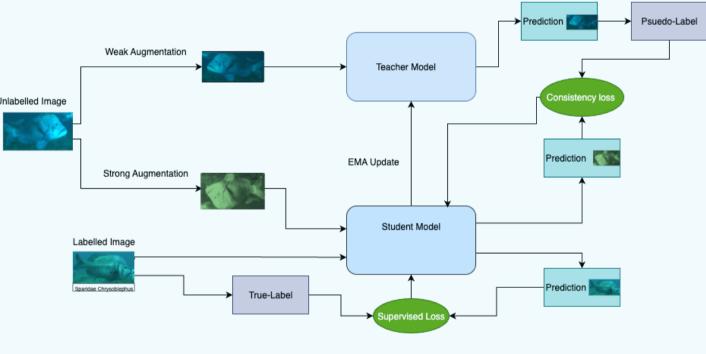
Detector

• Using the unlabelled samples, the team trained a custom YOLOv11 detector that achieved a mAP@50 of 80.2%.

Classification Approaches

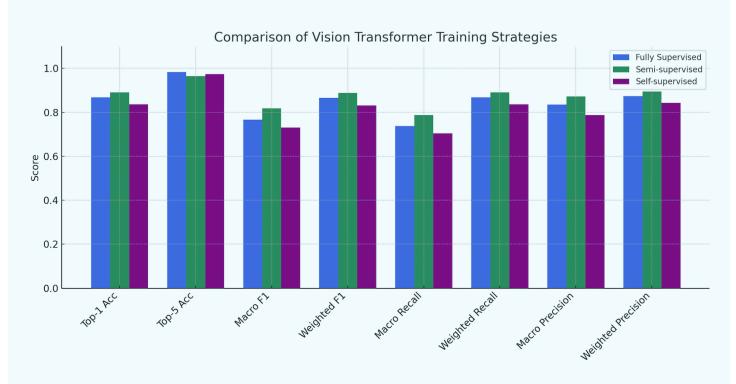
Semi-Supervised Learning with Vision Transformers

- By leveraging both labelled and unlabelled samples, trained a Vision Transformer (ViT) using an Exponential Moving Average (EMA) teacher-student framework
- This enabled the model to learn robust representations despite limited labelled data, addressing one of the major challenges in underwater species recognition



Results

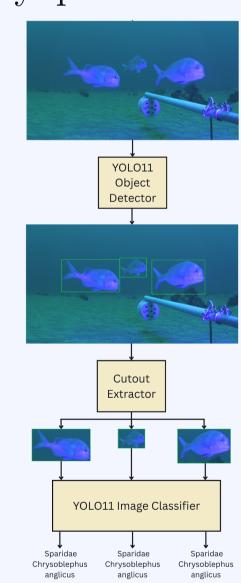
- ViT-EMA achieved highest top-1 accuracy (89.0%), outperforming fully supervised and MAE-pretrained variants
- Improvements also observed in macro and weighted F1-scores, indicating stronger generalisation across underrepresented fish classes
- However, MAE pre-training hindered performance, suggesting poor alignment with the classification task



Object Tracking for Data Augmentation

- Object tracking enabled better utilisation of the given video dataset
- By tracking labelled fish across consecutive video frames, generated a larger, more diverse labelled dataset for training

• Developed a two-stage detectionclassification pipeline that identifies fish within video frames and classifies each detection by species.



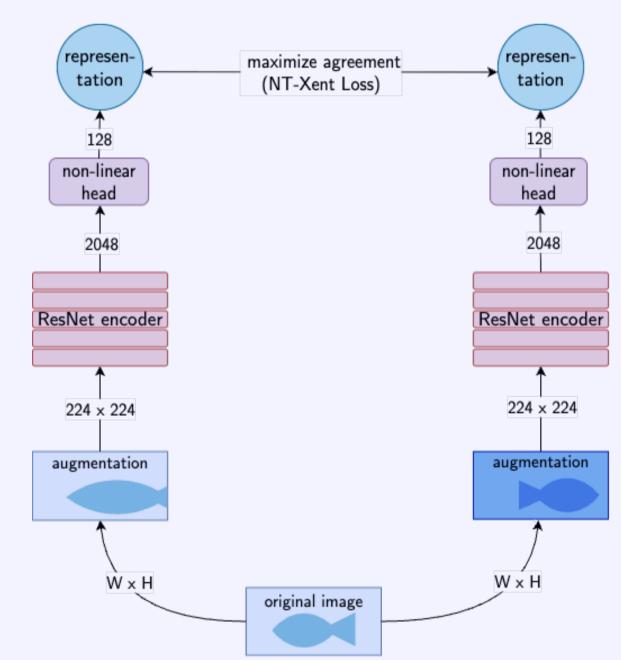
Results

- The YOLOv11 classifier trained on the tracking-augmented dataset achieved 13.4% higher top-1 accuracy compared to the model trained on the original dataset
- The augmented model also showed improvements in both macro and weighted F1 scores
- The model demonstrated better classification performance across all fish classes

Model	Train Data	Top-1	Top-3	Top-5	Macro F1	Weighted F1
ResNet	Original	0.4176	0.6287	0.7454	0.1914	0.4593
ResNet	Augmented	0.4156	0.6673	0.7618	0.2172	0.4651
YOLOv11	Original	0.6577	0.8255	0.8872	0.4725	0.6751
YOLOv11	Augmented	0.7917	0.9036	0.9402	0.6087	0.7999

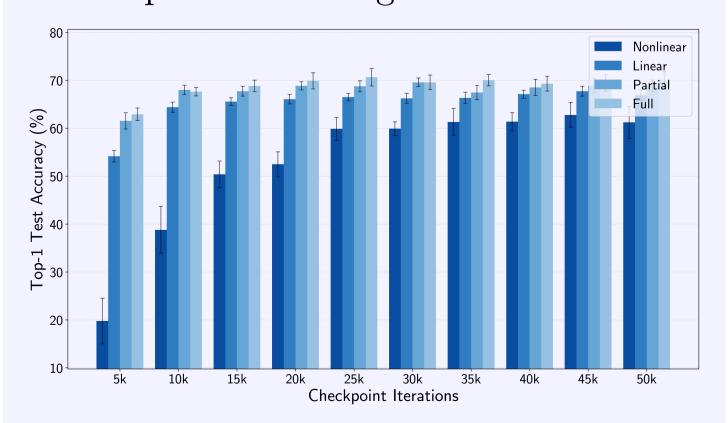
SimCLR Contrastive Learning

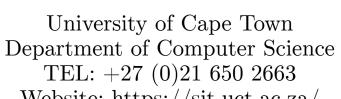
- Contrastive Learning is a self-supervised DL technique that allows for unlabelled data to be utilised for effective feature learning
- This allowed for large quantities of unlabelled data could be taken advantage of during training



Results

- Models learnt effective features through SimCLR training, plateauing after 25K steps.
- SimCLR model performance was matched by a fully supervised YOLOv11 classifier, pointing to the exceptional rate of progress in supervised learning





Max Elkington