Improving Language Models for Low-Resource Languages

Main Contributions

We generated 3 sets of synthetic isiZulu data. \We used machine transiation and
prompting to create the data

® \We achieved better in-language performance for Gemma3-4B by fine-tuning it on our
synthetic data

Introduction

Large Langauge models have
transformed Natural Language
Processing, doing tasks such as

question answering, summarisation, and
translation well. However, these

benefits are limited to high-resource
languages such as English, as they
underperform for low-resource
langauges, such as isiZulu. LRL-LLM
aims to reduce the gap in LLM usability
for languages considered low-resource.
Specifically, we close this gap for
isiZulu.

We investigated how fine-tuning Gemma-3-4B-IT on diverse instruction-tuning
datasets (AfridocMT, Aya Collection, and Inkuba-Instruct) affects accuracy across

different AfriMIMLU subject areas and analysed the impact of zero-shot and few-shot
prompting strategies on model performance.

® \We achieved substantial gains in model performance on isiZulu math word
problems using fine-tuning on Chain-Of-Thought data.

® Group-Relative Policy Optimisation (GRPO) further improved reasoning ability.
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