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Deep

Deep Learning for Infant-Brain EEG Modelling

Electroencephalography (EEQG) is an electrical measure of brain activity. It can be used to monitor and predict neurodevelopmental trajectories.
In this project, we present the first evaluation of using transformer- and state-space-based models with infant EEG data to predict
neurodevelopmental outcomes, as measured by Bayley Scales of Infant Development scores.

B Results

Classification tasks

Research questions

1. How well can deep learning models predict neurodevelopmental
outcomes as measured by the Bayley Scales subtests?

Task Model Accuracy Balanced Accuracy Table: Best results
2. How do pretrained models perform compared to models trained AllaserEs e EEEP () 0.3328:£0.1070  0.3123£0.1211 in boldface. “FT” is
from scratch in predicting neurodevelopmental outcomes? EEGM2 (scratch) — 0-2829+£0.0052  0.250040.0000 the finetuned model
P 9 P - Logistic Regression  0.6099 + 0.0000  0.6159 -+ 0.0000 ! ' >
: : - e . . Binary age EEGPT (FT) 0.5828 £ 0.0754  0.5525 = 0.1049 and “scratch” is the
Asses.smg the models’ predictive Capaplll’ues IS the primary focus, but we also. extensively EEGM2 (FT) 0.5081 - 0.0030 0.5000 - 0.0000 model trained from
investigate model performance to provide useful insights for future considerations. Logistic Regression 0.9325 + 0.0000  0.9325 4 0.0000 scratch.
Bayley Scale scores EEGM2 (FT) 0.5472 4+ 0.2313 0.5000 + 0.0000

Logistic Regression 0.6708 4= 0.0000 0.5499 + 0.0000

Dataset and Spectral Analysis

Bayley Scales Scores Khula EEG Dataset

e The Bayley Scales are a diagnostic tool
for assessing early childhood

o Transformer and SSM models both perform poorly, collapsing to majority class
predictions on all classification tasks.

« Feature-based logistic regression model performs well on age prediction (but also
poorly on all other tasks). This indicates that simpler models with manual feature
extraction may be more appropriate in the context of smaller datasets.

o Part of a more general study to chart
the cognitive development of infants

neurodevelopment. from African populations °

o Part of the test assesses cognitive, POP ‘ Reg ression tasks
language, and motor function in infants. e Consists of 1041 EEG nw u / N Key findings

» Standardised scores are on a scale with a recordings collected s TR B « Deep models fail to capture the true
mean of 100 and standard deviation of 19, from 321 South African — e distribution of scores, instead
with scores less than 85 on any test infants at 3, 6,12 and 24 _ collapsing to values within the mean.
considered “developmentally delayed”, months of age.

and “developmentally typical” otherwise. -~ - | - [% o Linear regression better captures the

score distribution, which suggests

PSD Overlay: 3M vs 24M

oL that simpler, feature-engineered

Spectral Analysis of EEG data Lo, — 2m ﬂ ) implementations are more suited for
« We computed the power spectral density Hala (0411 modestly sized datasets.
(PSD) Of the EEG Samples to analyse Alpha (8-12 Hz) 90.88 + 8.20 93.19 £ 12.95 92.61 t 7.62

99.75 £ 0.0000 98.00 £ 0.0000 100.00 £+ 0.0000
95.88 £ 0.0023 93.50 £ 0.0023 95.63 £ 0.0021
T T T

Cognitive Language Motor
Scale

Synthetic data task
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changes across age groups which a
discriminative machine learning model
may detect.

« We found changes in the alpha, delta and " \WU
gamma frequency bands over time, \~fw &

Beta (12-30 Hz) ﬂ

PSD (V?/Hz)

Motivation and findings

. . - Accuracy on test set with increasing noise Accuracy versus size of dataset used
consistent with current literature. o in synthentic data with fixed amount of noise « We used synthetic data to
0 10 20 i 30 . 40 50 0 100 — ,“-\ A 100 ] — inveStigate the poor model
requency (Hz —_— urac —e— Accuracy 1
D i R performance in a controlled
80 80— setting.
= .
2 g » We find that both transformer and
3 g 5 00— SSM models achieve perfect
M et h O d O lo g y - < classification accuracy provided
40 sufficient data and a high enough
Prediction tasks R : signal-to-noise ratio. .
0% 10 101 10° 1 T T T e This suggests that the dataset is
. e g . oy . . andard deviation in Gaussian
We attempted the easier task of age prediction in addition to Bayley Scales score prediction: SUENEALE e ghion I Sy Percentage of dataset used too small for these complex
models.
( \ - [ ] [ ] [ ]
Classification] —- (__Bray_ ) Classificaton Intrinsic Evaluations
AGE . J BAYLEY SCALES e EEGM?2
PREDICTION - ~ —— SCORES PREDICTION EEGPT
Regression 3,6, 12 or 24 months ) (Regression] We analyse the model’s performance on signal reconstruction.
~ - The intermediate feature representations reveal Model trained from scratch _ Finetuned Model
that the model does not recognise similarities T =t
Model Architectures amongst data samples. o
=
TSNE plot for epoch 19 :./ 1—
We adapted an existing transformer-based model and state-space model: of e - «-. | However. the S
o o. | " . ’ o L
o {Lje_sou2i - Y. | fine-tuned -2
Transformer model: EEGPT State-space model: EEGM2 | R model on :Z_(l) L L pu | |
Reconstructed EEG et . o ’
Class probabilities o o o o 8 blnary . . 0 500 1,000
Mediatormodute [ g « | f . . Timepoints : i
e TR classification . fimepoints
JET— Sazazprazgomomone- azafaaa ] ECNCR reveals clearer | ® The model performs well on signal LEGEND
! Gomvii) \ gll Max Pool(2,2) \ | Upsampling 13 g T T he . I'eCOﬂStI’UCtIOI’] NI
! ! 2! L 1§ : e clustering of . . Ol
o comen § 0 cmey - ETTE : NI same-age data || * Transfer learning improves performance on signal
L s § T | Mamba2slock | : samples signal reconstruction. e FrOM
N ' ! ’41:—“"“}"’““ i ° N S S | ples. e Poor performance on downstream tasks may scratch
] L | —_—— =n e be due to not using intermediate encoder = Fretned
e | MaxPool22 | Lo ] Man{baz information, which is used during pretraining.
R
- l : MambaTz S ! ! Uprmfzilin : Layer Norm
== Patnoterilpora oss I‘\ T /I I\ Con\{(3,3) 'l
?‘ ““ ”” 41 _______ g \-___l_-__/ .
e ey PN A Conv(1,1)
— Conclusions and future work
Pretraining (left) and finetuning (right) Components shaded in blue used in pretraining, but detached and
architectural setup. replaced with components shaded in red when doing downstream tasks.

This work provides an initial evaluation of and clarifies the current limitations

Logistic regression and linear regression baselines (for classification and regression tasks, of deep learning models for brain developmental research using infant EEG.

respectively) were implemented, using manual feature extraction with the PSD as features.
e The transformer-based EEGPT and state-space model-based EEGM2 do not perform

Training strategies well on downstream tasks.
For each architecture, we train models from scratch and use pretrained models in two phases: « Poor performance is due to insufficient data for these models or a low signal-to-noise
Phase 1: Self-supervised signal reconstruction Phase 2: Supervised training on downstream tasks ratio in the data.
Compute loss Compute loss . . .
o EEGM2 should combine features at multiple temporal and spectral resolutions.
______ R { )

wirimnnirts (RN | ek e —» _, Predicted » Use longer segments to provide models with more context for predictions.
A e e s WV A S Py class or value e . . . .

Raw/Masked EEG Reconstructed EEG Raw/fiasked 86 « Prioritise using larger infant EEG datasets, preserving channel selection and montage

consistency.
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