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ABSTRACT
Honey is a widely consumed natural product and a valuable agricul-
tural commodity. Its floral origin can be determined through pollen
analysis (melissopalynology), since pollen grains present in honey
trace back to the plants visited by bees. Accurate identification is
essential for consumer trust, trade, and protecting local apiculture,
especially in biodiverse regions like South Africa. However, tradi-
tional pollen analysis methods are time-consuming and not scalable
for modern demands in food traceability and quality assurance. In
response, this paper presents an automated deep learning-based
pipeline that integrates object detection (YOLOv11), classification
(Vision Transformer), and unsupervised clustering (HDBSCAN) to
identify known and novel pollen types from microscopy images.
The study further investigates how different Vision Transformer
configurations, specifically image resolution, patch size, and model
size, affect the classification performance of South African pollen
species. Experimental results highlight 3 main findings. First, the
YOLOv11 detector achieved an mAP50 of 98.4%, highlighting its
effectiveness in pollen grain detection. Secondly, the ViT classi-
fier achieved an F1-score of 90.16%. However, when combined, the
YOLO+ViT pipeline achieved a low overall F1-score of 22,87% in
classifying South African pollen species. Interestingly, ViT-Small
with 16×16 patches at 384×384 resolution achieved better perfor-
mance than the pipeline model both in ViT configuration tests and
on real honey sample evaluations, indicating that increasing input
resolution can sometimes have a greater impact on performance
than adjusting patch size or model size.Finally, HDBSCAN clus-
tering of low-confidence predictions (<70%) produced 31 clusters
with a 12.8% noise fraction, revealing meaningful groupings with
a silhouette score of 0.58, indicating generally well-separated and
internally consistent clusters.
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1 INTRODUCTION
Honey plays an important role not only as a dietary sweetener
but also as a product with medicinal, cultural, and economic sig-
nificance worldwide. The distinct chemical composition of each
honey is shaped by the flowers from which bees collect nectar, with
pollen grains serving as natural markers of its floral and geograph-
ical origin. Pollen analysis, therefore, provides a powerful tool for

verifying honey authenticity, supporting quality control, detecting
adulteration, and ensuring compliance with labelling regulations.

The standard traditional approach involves manual identification
and counting of pollen grains under amicroscope by trained experts.
While effective, this method is labour-intensive, time-consuming,
and susceptible to human error. For example, a single honey sam-
ple can contain hundreds to thousands of pollen grains, each of
which must be manually identified and counted under a microscope.
Preparing and analysing multiple samples can take several hours
per sample, making the process time-consuming and mentally ex-
hausting for trained experts.

Over time, new and efficientmethods of pollen analysis have emerged,
ranging from handcrafted feature-based methods [2,3,4] to more
advanced techniques that utilize machine learning and computer
vision. Earlier studies [5,6,14] have employed Convolutional Neural
Networks (CNNs) for pollen classification. CNNs can automati-
cally extract distinguishing features from images without the need
for handcrafted features, handling variations in pollen size, shape,
and surface patterns. They process large datasets efficiently, of-
fering higher accuracy and scalability than traditional methods.
CNNs detect local patterns such as edges and textures, which al-
lows them to capture fine details like pollen surface structures.
However, their focus on local features can be a limitation, as they
may miss broader structural relationships, such as overall shape
or feature arrangement, which are sometimes important for ac-
curate classification.With this, transformers, which were initially
applied to natural language processing (Vaswani et al. [11]), became
adapted for image processing as Vision Transformers by Dosovit-
skiy et al. [12]. They became popular because they could capture
long-range dependencies and relationships across the entire image,
unlike CNNs which focus mainly on local features.

Notably, many studies on automated palynology have focused pri-
marily on classifying individual pollen grains, often overlooking
the crucial detection step required for comprehensive honey analy-
sis. YOLO (You Only Look Once) addresses this gap by providing
a real-time object detection system that can simultaneously iden-
tify and localize objects in images. Several studies have verified
YOLO models as effective options for pollen grain detection [15,
16], highlighting their efficiency and accuracy for tasks where both
speed and precision are essential. While many studies have been
conducted on pollen analysis using deep learning, there is a notable
lack of studies applying these techniques to South African honey,
which is derived from the country’s rich floral diversity. Although
several studies have applied CNNs, YOLO, or Vision Transformers
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to pollen detection and classification, these efforts have primarily
focused on datasets from outside of South Africa. To date, there
has been little to no work specifically addressing the diverse pollen
species found in South African honey, despite the region’s extra-
ordinary floral biodiversity. Furthermore, most prior studies have
treated detection and classification separately, without developing
an integrated pipeline capable of handling both known and poten-
tially novel pollen types in a single framework.

In response, this paper proposes a deep learning pipeline that
combines object detection (YOLOv11), classification (Vision Trans-
former), and unsupervised clustering (HDBSCAN). The proposed
pipeline begins with YOLOv11, which scans microscopy images to
automatically locate individual pollen grains and draw bounding
boxes around them, isolating each grain from the background for
further analysis. The extracted grains are then passed through a
Vision Transformer, which classifies each grain into a known pollen
type by capturing both local details, such as surface textures, and
global relationships between features. The classified pollen grains
will be grouped by pollen species and counted to identify the type
of honey by majority pollen species. Finally, to account for the pres-
ence of unclassified or novel pollen types, unsupervised clustering
via HDBSCAN is performed on the feature embeddings extracted
from the penultimate layer of the Vision Transformer. The study
also examines how various Vision Transformer configurations such
as image resolution, patch size, and model size impact the classifi-
cation performance of South African pollen species.

The contributions are:

• The development of a deep learning-based pipeline that
integrates YOLOv11 for pollen grain detection, a Vision
Transformer for classification, and HDBSCAN for unsuper-
vised clustering of South African pollen species.

• A study on the impact of Vision Transformer image resolu-
tion, patch size andmodel size on classification performance
for South African pollen species.

2 RELATEDWORK
Pollen detection and classification have evolved significantly over
the years, moving from entirely manual microscopic analysis to
advanced automated systems that utilizes deep learning. Early
approaches relied on human expertise or handcrafted features,
while recent developments leverage convolutional neural networks
(CNNs), object detection models like YOLO, and Vision Transform-
ers (ViTs) to improve speed, accuracy, and scalability.

2.1 Traditional Methods
Traditionally, pollen detection and classification were done man-
ually using the ICBB method by Louveaux et al. [1]. The process
required a trained expert to identify and count different pollen
species under a microscope. This process was labour-intensive,
time-consuming, and prone to human error. Over the years, ad-
vancements in pollen analysis have been made to automate this
process, the most popular being the use of machine learning and
computer vision.

2.2 Partial Automation
Before fully automated machine learning methods were applied,
handcrafted feature-based methods were used. These were ap-
proaches where human experts designed specific features for a
classifier to differentiate between pollen grains. These methods
relied on predefined rules and statistical techniques rather than
learning directly from raw images like deep learning models. The
technique in Soares et al. [2] included image segmentation, feature
extraction, and machine learning-based classification, achieving
an F1-Score of 79%. Gonçalves et al. [3] used three feature extrac-
tors, Bag of Visual Words (BOW), Color, Shape and Texture (CST),
and a combination of BOW+CST to classify 23 pollen types from
the Brazilian Savannah, achieving a CCR of 64% with CST+BOW
and C-SVC. Travieso et al. [4] focused on pollen shape, and with a
dataset of 47 tropical honey plant species, achieved a mean success
rate of 93.8%.

2.3 Machine Learning
Challenges with manual and semi-automated pollen analysis meth-
ods, combined with advancements in deep learning, image process-
ing, and high-resolution microscopy, as well as the growing demand
for large-scale analysis, led to fully automated approaches. These
approaches included the use of CNNs, YOLO, and Vision Transform-
ers. CNN approaches included several studies [5,6,7]. Tsiknakis et al.
[5] conducted a comparative study on the Cretan Pollen Dataset v1,
comparing four CNN models (Inceptionv3, Xception, ResNet, and
Inception-ResNet) pretrained on ImageNet, applying a transfer and
ensemble approach. The best-performing model was a soft voting
ensemble of all base models, achieving an accuracy of 97.5%. Sevil-
lano and Aznarte [6] compared three setups: Setup A used AlexNet
for feature extraction with a linear discriminant classifier, Setup B
applied transfer learning on the POLEN23E dataset, and Setup C
combined both approaches. Setup C achieved the highest accuracy
at 97.2%. Olsson et al. [7] applied transfer learning with ResNet-
18, GoogleNet, and Xception on two pollen datasets, one with 83
species and another with 29 types, using both splitting (90/10) and
leave-one-out cross-validation. The splitting experiment achieved
up to 96% accuracy, while the leave-one-out experiment reached
up to 86%, with larger training sets generally yielding higher recall
rates.

Pollen analysis using YOLO included both detection and classi-
fication. Kubera et al. [8] used YOLOv5 to detect pollen grains from
three highly allergenic taxa (Alnus, Betula, and Corylus) preva-
lent in Central and Eastern Europe, obtaining an mAP ranging
from 86.8% to 92.4%.Zhang et al. [9] proposed a Swin-Transformer
YOLOv5 (S-T-YOLOv5) model for detecting and quantifying a single
pollen species, alfalfa (Medicago sativa L.), and compared its perfor-
mance with four other YOLO models: YOLOv3, YOLOv4, YOLOR,
and YOLOv5. S-T-YOLOv5 outperformed the others, achieving high
precision (99.6%), recall (99.4%), F1-score (0.995), and mAP50 (99.4%).
Jofre et al. [10] used bright-field microscopy with YOLOv8 to auto-
matically count pollen and determine the floral origin of Guindo
Santo honey, achieving an mAP of 97.6% for all classes and 94.4%
for Guindo Santo honey.
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Transformers were originally introduced for natural language pro-
cessing in 2017 (Vaswani et al. [11]) to improve machine translation
through self-attention and better handling of long-range depen-
dencies compared to recurrent or convolutional models. They were
later adapted for computer vision in 2020 (Dosovitskiy et al. [12])
as Vision Transformers (ViTs), which perform image classification
by representing images as sequences of patches. However, pure
self-attention does not capture local pixel relationships and relies
on large-scale dataset pretraining to reach performance levels com-
parable to CNNs. Duan et al. [13] proposed a Vision Transformer
that uses a FeatureMap-to-Token module and a CNN-like hierarchi-
cal design to combine local and global features, achieving the same
accuracy as CNNs on electron-microscopy pollen images. On their
custom 42-class electron microscopy (EM) pollen dataset, the small
version of their model (Our-S) achieved 96.14% top-1 accuracy from
scratch, improving to 97.16% with combined distillation.

In summary, recent advances in deep learning from CNN-based
feature extraction to transformer-based classification and real-time
object detection with YOLO have significantly improved the au-
tomation of pollen analysis. However, most prior research has fo-
cused on non-South African datasets and has primarily addressed
either detection or classification in isolation. Very few studies have
developed integrated pipelines that combine detection, classifica-
tion, and clustering to handle both known and potentially novel
pollen species. This gap is particularly relevant in the South African
context, where the region’s floral diversity presents unique chal-
lenges for honey authentication. Against this backdrop, the present
study introduces a unified pipeline that leverages YOLOv11 for
pollen grain detection, a Vision Transformer for classification, and
HDBSCAN for unsupervised clustering of uncertain cases.

3 MATERIALS AND METHODS
3.1 Dataset
The dataset consisted of 77 pollen classes from South Africa. The
dataset included two components: detection data (419 microscopy
images) and classification data (7,594 microscopy images). The de-
tection dataset contained microscopy images with multiple pollen
grains on it. The classification dataset contained 77 folders, each
representing a different pollen class, with multiple images of indi-
vidual pollen grains stored inside. Both datasets were divided into
training, validation, and test sets. To increase dataset variability and
reduce overfitting, data augmentation techniques such as random
horizontal flips, color jittering, and random rotations were applied.

3.2 Deep Learning Models
For detection, YOLOv11 was trained for 47 epochs with a batch
size of 8 and an input image size of 512. Training employed sto-
chastic gradient descent (SGD) with a learning rate of 0.00058 and
momentum of 0.9504. For classification, a Vision Transformer with
77 output classes was fine-tuned for 50 epochs on 224×224 images,
using a batch size of 16. The AdamW optimizer was applied with a
learning rate of 0.00018, weight decay of 0.00168, and layer-wise
learning rate decay, with 11 transformer blocks unfrozen during
fine-tuning. All models were implemented in PyTorch.

3.3 Evaluation Metrics
YOLO and classification model performance was assessed using
precision, recall, and F1-score[17,18]. Precision measures the pro-
portion of correct positive predictions, recall measures the propor-
tion of actual positives correctly identified, and F1-score provides a
harmonic mean of precision and recall. These metrics were com-
puted using true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) . . Cluster performance was assessed
by Silhouette Score and Noise Fraction[19,20]. The Silhouette Score
measures how well-separated and compact clusters are, with values
close to 1 indicating clear separation and values near 0 suggesting
substantial overlap between clusters. The Noise Fraction represents
the proportion of data points that HDBSCAN could not assign
to any cluster, reflecting the presence of ambiguous or distorted
samples.

3.4 Pipeline Setup
The proposed pipeline begins with YOLOv11, which detects and
crops individual pollen grains frommicroscopy images. The cropped
grains are passed to the ViT classifier. Predictions with a confidence
score greater than 70% are grouped by species and counted to esti-
mate the composition of the honey sample. A honey sample would
be labelled as monofloral if a single pollen class contributed 45% or
more to the total pollen count. Otherwise, it would be considered
multifloral. Predictions below 70% confidence are clustered using
HDBSCAN, which groups morphologically similar grains based on
ViT feature embeddings. An overview of the pipeline is presented
in Figure 1.

Figure 1: YOLOv11, Vision Transformer, and HDBSCAN
pipeline for pollen analysis.

4 RESULTS AND DISCUSSION
4.1 YOLO
Figure 2 shows changes in precision, recall, mAP50 and mAP50-95
during the training process. There was an initial sharp increase
in mAP50 (48.09%–94.28% over the first 4 epochs) and mAP50-95
(29.54%–80.86% over the first 10 epochs), after which performance
plateaued with minimal further gains in later epochs. This indicated
how the YOLOv11 model learned the patterns of the dataset quickly,
reaching a high performance at an early epoch stage. The best
validation epoch achieved an mAP50 of 98,40% and an mAP50-95 of
87,62%.This showed the YOLOv11 model’s high accuracy in terms
of bounding boxes. Precision and recall were 95,31% and 96,06%
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Figure 2: Performance of YOLOV11model during the training
process.

respectively. The high precision indicated that there were very
few false positives and the high recall percentage also indicated
that there were very few false negatives as well. This highlights
how well the YOLOv11 model performed in detecting pollen grains
in microscopy images. These results are consistent with previous
YOLO-based pollen studies[8,9,10], confirming YOLO’s robustness
for object detection tasks. Strong performance can be attributed to
the ability of YOLO to capture fine-grained local features, which
are well suited to the textures and boundaries of pollen grains.

4.2 ViT Classification
The ViT classification model which was evaluated across 77 South
African pollen classes achieved a macro average precision of 92,64%,
a macro average recall of 90,05% and a macro average F1-score of
90,16%. To account for class imbalance weighted averages were
also calculated. A weighted average precision, recall and F1-score
of 94%, 93,7% and 93,4% was achieved. Out of 77 pollen species,
25 achieved perfect macro precision, recall and F1-score(See table
10 in appendix).At the other end, the six pollen classes with the
lowest F1-scores (below 75%) were PAL0023, PAL0020, PAL0016,
Combretum sp1, Eucalyptus sp1, and Daisy sp2. The PAL pollen
classes (27 in total) were harder for the model to classify because
their images weren’t clearly labeled. They came from one of the
other 50 South African pollen classes. Thus, it was reasonable to
expect that the ViT model would have difficulty classifying them

correctly. As for Combretum sp1, Eucalyptus sp1 and Daisy sp2,
one reason for the low performance can be attributed to the number
of training images. Having more training images usually helps a
model perform better because it can learn more about each class.
With fewer training images, the model may not learn enough and
can make more mistakes on new data. This is evident for Daisy sp 2
which had 8 training images plus augmentation and only achieved
an F1-score of 20% as illustrated in figure 3. Although Eucalyptus
sp1 and Combretum sp1 had 36 and 37 training images respectively,
they still achieved a moderate F1-score of 58,06% and 62,86%.While
Lobostemon, which had the largest number of training images, had
an F1-score of 95,88%. Hence figure 3 also shows that the number
of training images is not the only reason for low performance as
some pollen classes achieved 100% F1-score while having only a
few training images. Thus the pretrained ViT model plus data aug-
mentation may have benefited some pollen classes with a small
number of training images, but not all.

Seven out of the 77 pollen classes consisted of more than one species
that had to be considered for classification. For example, the Daisy
pollen class, illustrated in Figure 4, had 7 species under it. This
meant that the model had to distinguish the features of the different
species of the same family. Out of 7 pollen classes that had more
than one species to consider, only 1 of these pollen classes, Daisy
sp2, had a low F1-score .This demonstrates that the model was able
to distinguish between the different species of the same family with
high accuracy as seen in figure 5(number of species indicated in
brackets) .The highest average F1-score, 97,92%, was achieved by the
Rhamnaceae pollen class with the lowest being an average of 77,68%
for the Eucalyptus pollen class. Although the model performed well
on the different species, intra-class similarity is another challenge
that the model must tackle. Table 1 highlights the top ten pollen
classes that were often misclassified by the model, with Eucalyptus
sp 1 having the largest count. This misclassification exists because
many pollen classes are present, 77 in total, and majority of these
pollen classes share similar shapes and geometry like the example
pollen classes in figure 6.This ultimately leads to misclassifications
by the ViT classifier.

Figure 3: Relationship between F1-score and the number of
training samples of South African pollen species.
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Figure 4: Seven different species of Daisy

Table 1: Misclassification counts of selected pollen species.

True Class Predicted Class Count
Eucalyptus_sp1 PAL0018 11
Vicia_sp_1 Apiaceae_sp1 7
PAL0023 Crassulaceae_sp1 6
PAL0014 PAL0019 5
Celtis Citrus_sp1 4
Eucalyptus_sp3 PAL0024 4
PAL0020 Rhamnaceae_sp_1 4
PAL0026 PAL0018 4
PAL0004 Celtis 4

4.3 YOLO+ViT pipeline
Nine honey samples were tested on the integrated YOLO+ViT
pipeline. Seven of these honey samples were sourced from different
South African regions and thus consisted of different types of SA
pollen classes. The other 2 honey samples(HS150 and HS189) con-
tained some South African pollen classes alongwith other unknown
pollen classes. A ground truth dataset listing the types of pollen
classes along with the count within each honey sample microscopy
image was used for comparison against what the model produced.
Table 2 indicates the macro average precision, recall and F1-scores
of the nine honey samples. The overall macro average performance
across all honey samples was 29,65% precision, 5.37% recall, and
22,87% F1-score.These results are quite poor and reflect the failure

Figure 5: Performance of pollen classes withmultiple species.

Figure 6: Similar pollen classes.

of the YOLO+ViT pipeline. The lowest F1-score was achieved by the
Non Fynbos Angola honey sample(5,68%) with the highest being
56,61% for HS150 honey sample(the honey sample that contained
some unknown pollen classes). Although the YOLOv11 detection
model achieved impressive results during training with an mAP50
of 98,40% and the ViT classifier with an F1-score of 92,64%, the
integration of the two did not lead to great results.
The observed underperformance of the YOLO+ViT pipeline may
be linked to the discrepancy between the training data that the
ViT classifier used (figure 7) and the extracted pollen grains that
the ViT classifier received as input from the YOLO detector as
shown in figure 8. YOLO generates bounding boxes around de-
tected pollen grains, which are then cropped and passed to the
ViT classifier. However, these crops can be imperfect: some grains
may be overlapped with neighboring grains, or include background
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noise, removing key morphological features such as shape as seen
in figure 8.The model, having only been trained on perfect pollen
images, would struggle with the imperfect ones. Because of this the
model’s predicted pollen count percentage would differ from the
ground truth pollen count percentage. For example, according to Ta-
ble 3, the Non-Fynbos Magoebaskloof honey sample was predicted
as multifloral by the pipeline, but was actually monofloral for Celtis
pollen with a percentage of 62.20%. Similarly, the Non Fynbos An-
gola honey sample was predicted as monofloral for PAL0020 with a
pollen composition of 56.94%, whereas the ground truth indicated
it was monofloral for PAL0019 with 49.40%.The only prediction
that the pipeline got correct was for the Fynbos Du Toit’s Kloof
honey sample. It predicted the honey sample as monofloral for the
Lobostemon pollen class with a percentage of 63,06%, compared
to ground truth which was 76%. Although the pipeline seemed
accurate in its labelling of multifloral honey samples, the problem
lied with the predicted pollen composition percentages. In the Fyn-
bos Stellenbosch honey sample (Table 4), the pipeline predicted
30 pollen classes, while the ground truth contained only 16. Of
these, only 9 classes from the ground truth (Eucalyptus sp2, Lo-
bostemon sp1,Monocot sp4, Aizoaceae sp1,Lycopodium,Eucalyptus
sp1,Monocot sp 2, PAL009 and Citrus sp1) were present in the
YOLO+ViT predictions. However, percentages greatly differed to
the ground truth. For example Eucalyptus sp2 was predicated with
a pollen composition percentage of 31,05%, as opposed to ground
truth which was 11,88%.These results suggest that the combina-
tion of imperfect YOLO crops, domain differences between training
and real honey samples, and low-confidence exclusions may have
limited the ViT classifier’s ability to generalize, contributing to
inaccuracies in predicting pollen composition.

Table 2: YOLO+ViT model performance on honey samples.

Honey sample Precision (%) Recall (%) F1-score (%)

Non-Fynbos Magoebaskloof 16.04 12.91 18.47
Fynbos Du Toit’s Kloof 36.11 1.76 18.33
Non-Fynbos-Angola 16.58 2.71 5.68
Fynbos-West coast Langebaan 11.80 1.48 9.73
Fynbos-Eendekuil, near Citrusdal 15.34 5.37 13.61
Fynbos-Table Mountain 22.38 8.88 25.45
Fynbos-Stellenbosch 21.21 3.22 23.13
HS189 66.97 3.18 34.81
HS150 60.42 8.85 56.61

Macro averages 29.65 5.37 22.87

Figure 7: ViT model classification training data.

Figure 8: Extracted pollen grains from YOLOv11.
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Table 3: Pipeline predictions vs. ground truth for honey sam-
ples.

Honey
sample

Pipeline Predicted % Ground
truth

Ground truth %

Non-Fynbos
Magoe-
baskloof

Multifloral – Monofloral:
Celtis

62.20

Fynbos Du
Toit’s Kloof

Monofloral:
Lobostemon

63.06 Monofloral:
Lobostemon

76.00

Non-Fynbos-
Angola

Monofloral:
PAL0020

56.94 Monofloral:
PAL0019

49.40

Fynbos-West
coast
Langebaan

Multifloral – Multifloral –

Fynbos-
Eendekuil,
near
Citrusdal

Multifloral – Multifloral –

Fynbos-Table
Mountain

Monofloral:
Eucalyptus
sp2

46.27 Multifloral –

Fynbos-
Stellenbosch

Multifloral – Multifloral –

HS189 Multifloral – Multifloral –
HS150 Multifloral – Multifloral –

(– indicates a list of pollen classes and percentages predicted by the YOLO+ViT
model, similar to Table 4).

Table 4: YOLO+ViT model predictions vs. ground truth for
Fynbos-Stellenbosch honey sample.

YOLO+ViT prediction Percentage (%) Ground truth Percentage (%)

Eucalyptus_sp2 31.05 Eucalyptus sp. 3 26.09
Lobostemon sp. 1 16.13 Lobostemon sp. 1 25.80
PAL0020 8.87 Eucalyptus_sp1 18.55
PAL0014 4.84 Eucalyptus_sp2 11.88
PAL0019 4.44 Lycopodium 6.09
Monocot sp. 4 4.03 Monocot sp. 4 5.80
Brachystegia 3.63 Uncertain 1.74
Combretum_sp1 3.63 Citrus_sp1 0.58
Passerina sp. 1 3.63 Daisy sp. 6 0.58
Aizoaceae sp. 1 2.82 PAL0026 0.58
Lycopodium 2.02 Vicia sp. 1 0.58
Eucalyptus_sp1 1.61 Aizoaceae sp. 1 0.29
Proteaceae sp. 2 1.21 Brassicaceae sp. 1 0.29
PAL0011 1.21 Daisy sp. 1 0.29
Scrophulariaceae 0.81 Monocot sp. 2 0.29
Monocot sp. 2 0.81 PAL0009 0.29
PAL0018 0.81 Poaceae 0.29
Rhamnaceae sp. 2 0.81
PAL0015 0.81
Brassicaeae_sp2 0.81
PAL0009 0.81
PAL0027 0.81
Cichoriodae 0.81
Plantago 0.81
Apiaceae sp. 1 0.81
PAL0022 0.40
Citrus_sp1 0.40
Euphorbiaceae_sp2 0.40
Carpobrotus 0.40
Erica_sp1 0.40

4.4 Clustering
HDBSCAN identified a total of 31 clusters along with 238 noise
points, corresponding to a noise fraction of about 12.8%. The clus-
tering quality was supported by a silhouette score of 0.58, indicating

that most clusters were reasonably well separated and internally
consistent. As shown in Figure 9, some clusters were well isolated,
such as clusters 0, 1, 4, and 5, while others appeared close to one
another for example, clusters 16, 17, and 18, suggesting a closer
relationship between those pollen classes according to the model.
Inspecting the images within each cluster revealed that many were
dominated by a specific pollen class as shown in table 5 (see table 11
for further details in the appendix). Notably, Cluster 0, located on
the far left of figure 9, contained images from different Daisy species,
pointing to a certain distinctness within the Daisy class itself. It
was also interesting to note that some pollen classes dominated
multiple clusters. This can happen because low-confidence images
capture variation within a class, such as differences in shape, size,
or orientation, and the ViT embeddings reflect this variation. For
example, the Lobostemon class dominated clusters 13, 16, and 21,
while Eucalyptus dominated clusters 6, 8, and 29, showing how the
model split each class into subgroups based on subtle differences
or uncertainty. Out of the 31 clusters, 20 were strongly associated
with a single pollen class. This shows that some pollen classes were
quite distinct and easily separated. However with 77 pollen classes
evaluated overall this highlighted the strong similarity between
pollen classes and the model’s difficulty in distinguishing them.

While clustering revealed meaningful groupings, the limited quan-
titative evidence and reliance on qualitative inspection meant its
reliability for practical honey authentication remains uncertain.
Taken together, these results suggest that while individual mod-
els perform strongly, their integration into an end-to-end honey
authentication pipeline remains a challenge.

Figure 9: UMAP of clustered images with a confidence score
of less than 70% using HDBSCAN.

5 VIT CONFIGURATION
The above pipeline utilized a ViT classifier configured with a small
ViT model, a patch size of 16 and an image size of 224. A further
experiment was carried out to investigate the effect of different
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ViT configurations on classification performance. The same South
African pollen dataset was used during the tests runs.Three key
Vision Transformer (ViT) design parameters were varied: model
size, patch size, and image size as indicated in table 6. ViT-Tiny,
ViT-Small, and ViT-Base were selected, progressively increasing
in depth, embedding dimension, and number of attention heads to
capture the trade-off between computational efficiency and repre-
sentational capacity. Patch sizes of 8×8 and 16×16 were explored to
evaluate token granularity, with smaller patches generatingmore to-
kens and capturing finer morphological details, while larger patches
reduce sequence length and computational cost. Input resolutions
of 224×224 and 384×384 pixels were tested to assess the impact of
resolution, as higher image sizes preserve subtle structural features
of pollen grains that may be lost at lower resolutions, albeit at
greater computational demand. This experimental design enabled
an evaluation of the interplay between model capacity, token gran-
ularity, and input resolution, helping identify configurations that
balance accuracy with efficiency for this specialized dataset.

Model size had a modest impact as shown in table 7. ViT-Base
achieved the highest F1-score (91.83%), while ViT-Tiny slightly out-
performed ViT-Small (91.31% vs. 90.16%), likely because smaller
models were less prone to overfitting on the limited data. Patch
size as seen in table 8 had minimal effect, with 8×8 patches slightly
outperforming 16×16 (90.17% vs. 90.16%), suggesting that finer to-
kenization offers only marginal gains while increasing sequence
length and computational cost.

Image resolution had the most significant effect as indicated in ta-
ble 9. Increasing from 224×224 to 384×384 improved F1-score from
90.16% to 91.97%, as higher-resolution inputs allowed each token to
encode richer morphological details without substantially increas-
ing token count. Overall, the results indicate that, for fine-grained
pollen classification on a limited dataset, higher input resolution
provides more performance benefit than simply increasing model
size or using smaller patches., while smaller ViT models can still
capture most discriminative features efficiently.

The ViT-S/16 (384) model, which achieved the highest accuracy
among the tested configurations(table 6) on the main dataset, was
evaluated on the same nine honey samples previously used for the
pipeline. Interestingly, ViT-S/16 (384) model slightly outperformed
the ViT-S/16 (224) pipeline model, achieving a macro-average pre-
cision of 30,82%, recall of 5,83%, and an F1-score of 25,50%, com-
pared to 29,65% precision, 5,37% recall, and 22,87% F1-score for the
pipeline model. This suggests that increasing input resolution can
capture finer morphological details thereby translating into better
performance on real honey samples.

Table 5: Cluster assignments for pollen classes.

Cluster Pollen class
0 Daisies
1 Lycopodium
2 Brassica
3 PAL0011
4 Celtis
5 Rhamnaceae sp. 1

Table 6: Performance comparison of different ViT models

Model Precision (%) Recall (%) F1-score (%)

ViT-T/16 (224) 92.74 91.54 91.31
ViT-S/8 (224) 90.72 91.22 90.17
ViT-S/16 (224)(pipeline) 92.64 90.05 90.16
ViT-S/16 (384) 94.30 92.38 91.97
ViT-B/16 (224) 93.11 92.56 91.83

Table 7: Effect ofModel Size on F1-Score (Patch = 16×16, Image
= 224×224).

Model F1-Score (%)

ViT-Tiny 91.31
ViT-Small 90.16
ViT-Base 91.83

Table 8: Effect of Patch Size on F1-Score (Model = ViT-Small,
Image = 224×224).

Patch Size F1-Score (%)

8×8 90.17
16×16 90.16

Table 9: Effect of Image Resolution on performance (Model
= ViT-Small, Patch = 16×16).

Image Size F1-Score (%)

224×224 90.16
384×384 91.97



Detection, classification, and clustering of South African honey using YOLO, ViT and HDBSCAN

6 CONCLUSIONS
This study aimed to develop and evaluate a deep learning pipeline
for South African honey authentication using pollen analysis. The
pipeline integrated YOLOv11 for pollen grain detection, a Vision
Transformer (ViT) for classification, and HDBSCAN for clustering
low-confidence predictions, with the goal of improving accuracy,
scalability, and robustness in identifying floral origins of honey
samples.

The YOLOv11 model performed strongly on pollen grain detec-
tion, achieving an mAP50 of 98.40%, a precision of 95.31% and a
recall of 96.06%. The Vision Transformer classifier also performed
well on individual pollen grain classification, with macro-averaged
F1-scores just above 90% across 77 pollen classes, and demonstrated
that model size, image resolution, and patch size impact classifica-
tion performance. However, when integrated into the YOLO+ViT
pipeline for honey sample analysis, performance dropped signifi-
cantly, with macro F1-scores around 22,87%. The poor results were
potentially due to imperfect pollen grains passed from YOLO to the
classifier, leading to inaccurate predictions of pollen composition in
honey. Clustering with HDBSCAN provided some value by group-
ing low-confidence predictions and highlighting morphologically
related classes.

The main limitation of the project was the gap between strong
model performance in isolated detection/classification tasks and
poor performance in the full end-to-end pipeline on real honey sam-
ples. This was largely due to inconsistencies between the training
data (well-prepared individual pollen images) and test data (YOLO-
cropped grains from honey samples). Additionally, class imbalance
in the dataset, with some species represented by very few samples,
led to weaker classification performance for rare pollen types. Al-
though clustering revealed useful groupings, its role in practical
honey authentication was not assessed in detail because clustering
was specifically applied to low-confidence predictions.

7 FUTUREWORK
Future research should focus on improving the integration between
detection and classification by training Vision Transformers directly
on YOLO-generated crops, ensuring that the classifier is exposed to
the same imperfections present during inference. Expanding and
balancing the dataset with more representative samples of South
African pollen species is also essential, as the current imbalance
limited performance for rare classes. In particular, collecting larger
numbers of samples for underrepresented species and incorporat-
ing regional variations of the same pollen types would strengthen
model generalization. Building such a comprehensive dataset would
also enable experiments with larger transformer architectures and
hybrid CNN–ViT models, potentially unlocking higher classifica-
tion accuracy. Ultimately, these improvements would not only en-
hance the reliability of the pipeline for honey authentication but
also contribute to the development of scalable automated palynol-
ogy tools suited for South Africa’s unique biodiversity.
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A APPENDIX

Table 10: Precision, Recall, and F1-Score for top 25 pollen
classes.

Class Precision Recall F1-Score

Acacia 1 1 1
Aulax 1 1 1
Brachystegia 1 1 1
Campanulaceae 1 1 1
Carpobrotus 1 1 1
Daisy_sp1 1 1 1
Daisy_sp6 1 1 1
Daisy_sp7 1 1 1
Erythrina 1 1 1
Lycopodium 1 1 1
Monocot_sp_2 1 1 1
Monocot_sp_3 1 1 1
PAL0002 1 1 1
PAL0003 1 1 1
PAL0011 1 1 1
PAL0012 1 1 1
PAL0015 1 1 1
PAL0022 1 1 1
PAL0025 1 1 1
Poaceae 1 1 1
Rhamnaceae_sp_1 1 1 1
Rhamnaceae_sp_2 1 1 1
Searsia 1 1 1
Solanaceae 1 1 1

Table 11: Most common taxa for each cluster of low-
confidence predictions.

Cluster ID Most common taxon

0 Daisies
1 Lycopodium
2 Brassica
3 PAL0011
4 Celtis
5 Rhamnaceae sp. 1
6 Eucalyptus sp. 3
7 Rhamnaceae sp. 1
8 Apiaceae sp. 1
9 PAL0003
10 Proteaceae
11 Unknown
12 Unknown
13 Lobostemon
14 Aizoaceae sp. 1
15 Crassulaceae sp. 1
16 Lobostemon
17 Unknown
18 Vahlia-type sp. 1
19 PAL0010
20 Scrophulariaceae sp. 1
21 Lobostemon
22 Vahlia-type sp. 1
23 Monocot sp. 5
24 PAL0019
25 Eucalyptus sp. 1
26 Eucalyptus sp. 1
27 Eucalyptus sp. 2
28 Eucalyptus sp. 3
29 Eucalyptus sp. 3
30 Eucalyptus sp. 2
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