POL-ID: Automated Honey Authentication Through Deep
Learning-Based Pollen Grain Analysis

Maryam Mather
University of Cape Town
Rondebosch, Western Cape, South Africa
mthmar046@myuct.ac.za

ABSTRACT

Honey authentication is critical for food safety and preventing
economic fraud in the global honey market. Traditional melissopa-
lynological analysis remains the standard for determining honey
origin and authenticity but is time-consuming and requires special-
ized expertise. This study presents POL-ID, an automated honey
authentication pipeline that combines deep learning-based pollen
grain classification with established melissopalynological standards
from the International Commission for Bee Botany (ICBB).

The system integrates four key components: YOLOv11-nano for
pollen grain detection (achieving 97.73% mAP@0.5), ConvNeXt
Tiny for species classification across 77 pollen taxa (93.51% accu-
racy), HDBSCAN clustering for novel pollen type discovery (ARI
= 0.962), and an automated honey classification pipeline. The ap-
proach addresses challenges in pollen analysis including class im-
balance, morphological similarity, and uncertainty quantification
through confidence-based routing and unsupervised clustering.

Testing on South African honey samples, POL-ID successfully
classified honey types with high accuracy despite underestimation
of dominant pollen percentages. The system processes complete
honey slides automatically, providing detailed pollen distribution
analysis, confidence scoring, and ICBB-compliant honey authen-
tication reports. POL-ID demonstrates the potential for Al-driven
automation in honey authentication, which offers a scalable solu-
tion for quality control while reducing analysis time and expertise
requirements. The system provides a foundation for applications
in botanical origin verification in South African apiculture.
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1 INTRODUCTION

Pollen analysis is central to honey quality control, as it verifies
both botanical origin and product authenticity [1]. Traditionally,
this analysis is done through melissopalynology, a manual process
that is labour-intensive, time-consuming and often costly [14]. It
can also be prone to human error and have subjective interpreta-
tions especially the differentiation of pollen grains with very subtle
morphological differences [10]. The South African honey industry

highlights these challenges as the biodiversity of the regions pro-
duces a wide variety of pollen taxa, making authentication vital but
complex.

To overcome these limitations, there has been a growing demand
for the automation of pollen analysis. Artificial Intelligence (AI)
and machine learning (ML), particularly deep learning (DL), have
emerged as promising solutions to automate the pollen classifica-
tion directly from microscopic images [22]. Deep learning models,
like Convolutional Neural Networks (CNNs), are well-suited for
image-based classification as they can automatically determine and
extract discriminative features from images [27]. This will allow for
enhanced efficiency and speed, improved accuracy and non-reliance
on specialized expertise. Whilst these methods have been applied
in other countries with their region-specific taxa, there remains a
gap of honey authentication tools designed to specifically handle
South African pollen diversity.

This paper aims to build the first automated honey authenti-
cation system designed for South African pollen. The goal was
to achieve classification accuracy of 80-85% or higher to provide
reliable benchmarks for honey authentication in South Africa. To
reach this, we focused on four areas. First, we aimed to develop
and validate a CNN-based classification approach that can handle
the exceptional taxonomic diversity of South African pollen and
combine it with unsupervised clustering to flag unknown or novel
types. A YOLO-based detection module was added to locate pollen
grains on slides. Finally, we aimed to identify and implement op-
timal techniques for handling class imbalance and morphological
similarity in diverse pollen datasets.

This study makes a number of contributions. It introduces the
first comprehensive automated honey authentication system tai-
lored to South African pollen taxa. It demonstrates a CNN-based
approach that achieves strong classification accuracy, with the in-
tegration of unsupervised clustering for the discovery of novel
pollen types. Finally, it presents an automated pipeline for honey
classification, establishing a foundation for both scientific research
and industry application to verify if the pollen complies with the
declared botanical origin of a honey sample [42].

2 BACKGROUND AND RELATED WORK

2.1 Background

2.1.1  Melissopalynology and Honey Authentication. Melissopaly-
nology is the manual study of pollen grains in honey to determine
its botanical and geographical origin [41]. It is a traditional method
of honey analysis which requires skilled experts which can be both
labour intensive and time consuming [27]. The method has long
relied on microscopic identification and quantitative analysis of
pollen, following the standards of the ICBB [35].Within this system,
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honey is described as monofloral when at least 45% of the grains
belong to one plant type, as mixed when the dominant type falls
between 20 and 44%, and as multifloral when no single type exceeds
20% [32].

Preparing and analysing a single sample often takes several
hours [9]. South Africa’s flora adds a further challenge. With more
than 24,000 plant species, the pollen diversity far exceeds that of
most honey-producing regions, which makes the task of authenti-
cation especially demanding [24].

2.1.2  Computer Vision Fundamentals. Computer vision has offered
new ways to approach pollen analysis. Object detection methods
such as YOLO (You Only Look Once) predict both the location and
identity of objects in a single step [13]. It divides an image into
grids and regresses bounding boxes directly. Modern versions, such
as YOLOv8 and beyond, introduce stronger feature pyramids and
anchor-free detection heads to improve accuracy [39].

Convolutional neural networks (CNNs) form the backbone of
most vision tasks. They learn layered feature representations through
successive convolution and pooling operations [38]. Modern de-
signs such as ConvNeXt combine established convolutional struc-
tures with ideas from vision transformers, using depthwise separa-
ble convolutions and layer normalization to balance accuracy with
efficiency [18].

Transfer learning makes these networks practical for domains
where data is limited. By starting from models pre-trained on large
datasets such as ImageNet, the lower layers can supply general
visual features while higher layers are tuned to the specific classifi-
cation problem [40]. Performance is then measured with standard
metrics. Precision quantifies the proportion of correct positive pre-
dictions [1], while recall captures how many actual positives are
detected [22]. The F1-score balances the two as a harmonic mean
of precision and recall [19]. For detection, mean Average Precision
(mAP) at different overlap thresholds provides the benchmark, with
mAP@0.5 being the most common measure. [15].

2.1.3 Unsupervised Learning and Clustering. Clustering methods
group similar pollen samples without labels, helping to identify
patterns or novel types [1]. HDBSCAN, a hierarchical extension of
DBSCAN, builds clusters of varying density and identifies points
that do not fit any group. This makes it suitable for datasets where
the number of clusters is unknown in advance [2].

Before clustering, high-dimensional features from deep networks
often require dimensionality reduction. Principal Component Anal-
ysis (PCA) offers a linear method that retains as much variance as
possible in fewer dimensions. UMAP provides a non-linear alter-
native that preserves local structure, making it effective for both
visualization and preprocessing [25].

To judge the quality of clustering, several metrics are used.
The Adjusted Rand Index (ARI) compares discovered clusters with
ground-truth labels, ranging from -1 to 1, with higher values indi-
cating stronger agreement [36]. The silhouette coefficient measures
how distinct the clusters are relative to one another [29], while the
Davies—Bouldin index evaluates the ratio of within-cluster simi-
larity to between-cluster separation, with lower scores reflecting
better quality [6].

Maryam Mather

2.1.4 Class Imbalance and Deep Learning Optimization. A recur-
ring challenge in pollen datasets is class imbalance. Some taxa are
abundant, while others appear only rarely. Techniques such as focal
loss reduce the influence of easy examples and focus the model on
minority classes [17]. Weighted sampling increases the chance of
underrepresented classes being selected during training. Stratified
splitting maintains balanced proportions across training, validation,
and test sets.

Data augmentation further strengthens training by simulating
the natural variability of pollen. Geometric changes such as ro-
tations, flips, and crops help the model cope with differences in
orientation and position [30]. Photometric adjustments, like bright-
ness and contrast, account for variation in imaging conditions.
These transformations must be chosen carefully so as to not erase
the visual traits that distinguish one pollen type from another.

2.2 Related Work

2.2.1 Manual methods and in the South African Landscape. In ad-
dition to melissopalynology, conventional analyses such as physic-
ochemical and sensory methods have been widely used to ensure
honey authenticity [42]. However, these methods have gradually
been abandoned due to results variation and the continuous devel-
opment of adulteration strategies. In South Africa, recent works that
regard melissopalynology follow conventional light-microscope
pollen analysis to trace honey’s botanical origin [26]. It also in-
volves analyzing parameters such as sugars (fructose, glucose), pH,
total acidity, moisture, and ash to monitor honey quality. However,
South Africa’s unique flora makes pollen identification difficult, and
incidental wind-blown pollen (e.g. grasses) can skew honey spectra.
There have been no works in a South African context that relate
to an automated pollen identification system, which highlights the
need for pollen monitoring systems to overcome the limitations of
manual methods, with such systems being developed and tested
across various regions [1] [5].

2.2.2  Automated Pollen Detection. Recent studies have introduced
the concept of automated pollen detection which aim to overcome
the limitations of manual analysis, making the process faster. A
novel approach for identifying fraudulent honey has been devel-
oped that utilizes machine learning augmented microscopy [11].
This system was specifically designed to segment and identify the
botanical origin, and distribution of pollen grains from microscopes.
A three-class YOLOvV2 network was trained to detect and segment
pollen. It demonstrated promising results as performance metrics
included a precision of 0.663, sensitivity/recall of 0.914, and an F1-
score of 0.769. Air bubbles formed the majority of false positives.

2.2.3 Automated Honey Classification. Deep learning, particularly
CNNs, have proven to be a promising solution to automate pollen
classification. This classification model has shown great effective-
ness by accurately classifying and counting the number of pollen
grains in microscopic images [27]. For example, a study using five
pre-existing neural networks on honey pollen found the Incep-
tionV3 network (a type of CNN) achieved an accuracy of 98.15% [19].
Another comprehensive dataset of almost 19,000 images from 16
pollen types, related to Spanish citrus and rosemary honey, was
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Figure 1: Representative pollen grains from the classifica-
tion training dataset showing morphological diversity across
South African taxa which includes 77 distinct pollen types
with varying sizes, shapes, and textures captured at different
focal depths.

constructed and used to test various CNNs [12]. In this study, the
InceptionV3 network achieved the best accuracy mean of 97.99%.

There has still been a significant challenge for deep learning tech-
niques which is the lack of a substantial labelled dataset required
for training [11]. Overfitting is also a concern as validation based
on splitting experiments may overestimate the accuracy achievable
under new conditions [27]. The millions of parameters in deep
networks can also contribute to computational complexity and ex-
tensive memory usage which makes them impractical for implemen-
tation, as seen in networks like InceptionV3 and DenseNet201 [12].
To address these limitations, a new, simpler network called Pol-
leNetV1 was proposed which achieved 96% accuracy with lower
computational and memory effort. Strong visual resemblances be-
tween different pollen classes and blurriness in images can hinder
classification accuracy [22].

2.24 Clustering Methods. When combined with Linear Discrimi-
nant Analysis (LDA) and pollen count, PCA proved useful in classi-
fying honey samples by botanical origin, with some types achieving
100% correct classification [4]. However, distinct separation was not
always observed, for instance, with Myrtaceae and Salix samples,
which showed overlapping due to their diverse pollen sources. Hier-
archical Cluster Analysis (HCA) can further refine sample clusters,
and in one study, combined with FTIR data and deep learning, it
achieved a 96.15% accuracy for clustering honey samples [1].

3 MATERIALS AND METHODS

3.1 Dataset Development and Preparation

3.1.1 Detection Dataset. The detection dataset was built in col-
laboration with UCT’s Department of Chemistry which consisted
of microscope slide images of honey samples, each with multiple
pollen grains. The dataset included images captured from the same
honey samples used for classification. Annotation was carried out
in CVAT (Computer Vision Annotation Tool) and exported in YOLO
format. The final collection contained thousands of annotations,
and covered grains of different sizes, orientations, and focal condi-
tions. Figure 1 shows representative examples of the morphological
diversity captured in the training dataset. The dataset was divided
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Figure 2: Part of a reference atlas of South African pollen
taxa included in the classification dataset. Some from the
77 distinct pollen types show the morphological complexity
handled by the POL-ID system.

at the image level into training, validation, and test sets, using a
ratio of 70% for training, 15% for validation, and 15% for testing. An-
notations were exported in YOLO format, with each image linked
to a text file containing the normalized bounding box coordinates
and a single class label representing pollen.

3.1.2  Classification Dataset. The classification dataset images con-
tained pollen grains from honey samples collected specifically for
model training. Each image showed one grain of a single known
taxon. To capture natural variation in morphology, multiple images
of the same grain were taken at different focal depths and magnifi-
cations. This allowed the model to learn from the diversity present
in individual views.

Following initial model development and evaluation, the dataset
was expanded from 75 to 77 taxa through the addition of two previ-
ously underrepresented pollen types and supplementary samples
for taxa with limited training data (Figure 2 and additionally Fig-
ure 10 (Appendix B)). From these, 6588 grain images were extracted
for training. Class sizes ranged from as few as 24 to as many as 658
samples per taxon, with a median of 68. This imbalance reflected the
natural abundance patterns of pollen types in the samples, where
dominant nectar sources such as Lobostemon were represented
by hundreds of grains, while rare taxa contributed fewer than 30
samples. While this expanded dataset enabled comparisons (as re-
ported in Section 4.2), attempts to retrain the classification model
on the 77-taxa configuration resulted in deteriorated performance
on previously well-classified taxa.

3.1.3  Pipeline Validation Dataset. For end-to-end pipeline valida-
tion and honey authentication testing, an independent set of nine
commercial honey samples was obtained. Six were sourced from dif-
ferent regions across South Africa, two were unknown samples and
one was from Angola. The validation set was kept separate from
model training and development to ensure an unbiased evaluation.
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3.1.4 Data Annotation and Quality Control. Taxonomic identifi-
cation was carried out by trained palynologist Janais Delport. A
custom preprocessing pipeline was developed to extract annotated
pollen grains from the original slide images. Each grain was cropped
with a standardized procedure that included a ten-pixel border
around the bounding box to preserve contextual information. The
extracted grains were then resized to 224 by 224 pixels using bicu-
bic interpolation and saved into taxonomically labelled directory
structures compatible with deep learning frameworks.

3.1.5 Data Preparation and Augmentation. To prevent data leak-
age and ensure robust model evaluation, dataset splitting was per-
formed at the grain level rather than the image level, since multiple
images of the same grain were often captured at different focal
depths and magnifications. All variants of a single grain appeared
only in the training, validation, or test set. Stratified sampling was
applied to preserve class balance across splits, although this was
less effective for the rarest taxa with fewer than 30 examples [3].

Online data augmentation was applied during training using
PyTorch’s torchvision.transforms library [33]. The augmentation
pipeline included geometric transformations, such as random flips
and full rotations, to account for arbitrary orientations under the
microscope. There were photometric adjustments of brightness,
contrast, saturation, and hue to simulate variable illumination. Spa-
tial transformations such as random cropping and limited affine
translations (+10% translation, no rotation or shearing) were per-
formed to improve spatial invariance. All training images were nor-
malized with ImageNet statistics to support the use of pretrained
weights. Validation and test sets were processed only with resizing
and normalization to ensure consistency in evaluation.

3.2 Pollen Grain Detection Module

YOLOv11 was selected as the object detection framework for local-
izing pollen grains within honey slide images. YOLO architectures
are well suited to this task with their single step detection [13].
The nano variant (yolo11n.pt) was employed to make the approach
more feasible for resource-constrained settings [37].

The model was initialized with COCO (Common Objects in
Context) pre-trained weights to take advantage of low-level feature
representations such as edge and shape detection. This transfers
well to the circular and elliptical morphologies of pollen grains [34].
Hyperparameters included an input resolution of 640 by 640 pixels,
a batch size of 16, and a maximum of 300 epochs with early stopping
after 30 epochs of no improvement. Online data augmentation was
applied during training to improve generalization across different
imaging conditions.

Performance was evaluated using standard object detection met-
rics. The primary measure was mAP@0.5, with additional reporting
of mAP across IoU thresholds from 0.5 to 0.95. Precision and recall
curves were used to analyse trade-offs between false positives and
false negatives.

3.3 CNN-Based Pollen Classification Module

3.3.1 Model Architecture Selection. ConvNeXt was selected for
pollen grain classification because of its strength in fine-grained
recognition and its balance of accuracy and efficiency. This ap-
proach is well suited to pollen taxonomy, where subtle differences
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between morphologically similar grains must be distinguished [16].
The ConvNeXt Tiny variant was used as the baseline model. To
explore the impact of model capacity, ConvNeXt Small, and other
architectures like EfficientNet and ResNet, were also evaluated to
test whether larger architectures could improve accuracy.

3.3.2 Transfer Learning Strategy. All models were initialized with
ImageNet pre-trained weights. This provided a foundation of low-
level feature representations such as edges, textures, and shapes,
which transfer well to pollen microscopy [40]. The final classifica-
tion layer was replaced with a new head matching the 77 pollen taxa
in the dataset. Fine-tuning the feature extractors allowed the models
to adapt to the domain-specific requirements of pollen classifica-
tion [31]. It leveraged the representational strength of pretraining
to compensate for the limited dataset size.

3.3.3  Training Configuration and Optimization. Models were trained
using the AdamW optimizer with an initial learning rate of 8 x 107>
and a weight decay of 0.015 [20]. A ReduceLROnPlateau scheduler
dynamically lowered the learning rate by a factor of 0.7 after six
stagnant epochs and enabled stable convergence while avoiding
overfitting [28]. Training ran for a maximum of 45 epochs, with
early stopping triggered when validation accuracy failed to improve.
A batch size of 20 was chosen to balance memory use with stable
gradient estimates.

3.3.4 Loss Function and Class Imbalance Handling. The dataset
showed strong natural imbalance, with class counts ranging from
fewer than 30 to more than 600 grains per taxon. This was addressed
with stratified sampling across the 70-15-15 split, though the small-
est classes remained underrepresented. During training, minority
taxa with fewer than 50 examples were upweighted (up to 3x) in
the loss function to improve their recognition without harming
performance on dominant classes. To improve generalization, label
smoothing cross-entropy with ¢ = 0.1 was employed, which re-
duced overconfidence in predictions and mitigated label noise [21].
This was especially important where taxonomic boundaries were
subtle.

3.3.5 Model Evaluation and Validation. Performance was assessed
using multiple metrics. Accuracy provided an overall measure of
performance, while macro-averaged precision, recall, and F1-scores
accounted for class imbalance. Per-class results were analysed to
highlight taxa with persistent misclassifications. Model stability
was further tested through repeated runs with different random
seeds, providing cross-validation of performance. Experimental
conditions were compared statistically.

3.3.6  Experimental Conditions and Ablation Studies. Several exper-
imental configurations were designed to explore the effect of differ-
ent training strategies on classification performance. The baseline
configuration used ConvNeXt Tiny with standard cross-entropy
loss and basic augmentation, providing a reference point for subse-
quent experiments. Additional experiments introduced enhanced
regularization through label smoothing, increased dropout, the im-
pact of focal loss, cosine annealing learning rate schedules, gradient
clipping, ensembles and test-time augmentation.
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3.4 Novel Pollen Type Discovery Through
Clustering

To explore potential novel pollen types beyond the supervised clas-
sification labels, deep feature vectors were extracted from the penul-
timate layer of the trained ConvNeXt model. These 768-dimensional
embeddings capture high-level morphological patterns and discard
low-level noise. Features from all available datasets (training, vali-
dation, and test) were pooled to maximize morphological diversity
and then standardized via z-score normalization for unsupervised
analysis.

Dimensionality reduction was applied prior to clustering: PCA
was used to denoise features and retained 95% variance, and UMAP
provided reduced spaces (10D for clustering, 2D for visualization)
that preserved local structure more effectively than linear projec-
tions. HDBSCAN was selected as the primary clustering algorithm
due to its ability to handle variable densities and identify noise
points that may represent rare or novel taxa [23]. Parameter sweeps
over minimum cluster size, minimum samples, and distance met-
rics were conducted, with evaluation based on clustering validity
indices.

Cluster purity was assessed relative to taxonomic labels. Homo-
geneous clusters validated model embeddings, while mixed clusters
flagged possible mislabels. Noise points and local outliers were
examined separately through a protocol which combined visual
inspection, reference comparison and contextual ecological infor-
mation. While CNN-based clustering provides a useful exploratory
tool for highlighting ambiguous cases, its effectiveness is limited
by biases in the training data [7].

3.5 Honey Authentication Pipeline

The POL-ID system, as shown in Figure 3, processes raw micro-
scopic honey slide images into standardized authentication reports
that follow International Commission for Bee Botany (ICBB) proto-
cols. The workflow has four components: (1) pollen grain detection
with YOLO, (2) taxonomic classification with ConvNeXt, (3) novel
type discovery with HDBSCAN clustering, and (4) honey authenti-
cation based on melissopalynological standards. Each slide is pro-
cessed step by step with built-in error checks to handle variation
in image quality and honey type.

Pollen grains are first located with YOLO. Inputs were stan-
dardized consistent with model training. Classification outputs are
routed based on confidence. High-confidence grains (> 70%) are
assigned labels directly. Low-confidence grains (< 70%) bypass
forced classification and instead enter the clustering stage, where
features are extracted from the CNN’s penultimate layer to capture
morphological patterns.

Low-confidence grains are pooled and clustered using HDB-
SCAN. Single-grain outliers are flagged for expert review, while
clusters with multiple samples are treated as novel candidates. The
pipeline applies established melissopalynological thresholds [35].
This ensures results are aligned with international norms for honey
authentication. Final reports give the honey classification, domi-
nant taxa, confidence scores, full pollen counts, grain-level results,
and clustering outcomes. Samples with too many low-confidence
results are flagged for review to avoid misinterpretation.
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Figure 3: POL-ID system flowchart showing the complete
pipeline from honey image upload through detection, classi-
fication, and clustering to final report generation.
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Figure 4: YOLOv11-nano training performance showing con-
vergence of loss functions and detection metrics over 300
epochs.

4 RESULTS
4.1 Detection Module Performance

The YOLOv11-nano detector achieved strong performance in iden-
tifying pollen grains on honey slides. On the test set, it reached
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Figure 5: Detection results showing YOLO bounding boxes
with confidence scores on honey slide images. The system
identifies pollen grains across different morphologies and
imaging conditions.

a mean Average Precision of 97.73% at IoU 0.5, above the initial
80-85% target for reliable authentication. Performance remained
robust across stricter thresholds, with mAP@0.5-0.95 of 91.29%.

Precision (96.36%) and recall (96.58%) showed that the system
consistently identified true pollen grains with few false positives
or missed detections. Of 211 annotated grains, 195 were correctly
detected, with only 8 false positives and 16 false negatives. The
detector showed no false positive detections on background regions,
preventing debris or air bubbles from being miscounted as pollen.

Training converged over 300 epochs, with both training and
validation losses following similar trajectories (Figure 4). Box re-
gression, classification, and focal loss values all decreased smoothly,
and performance plateaued around epoch 100. Precision and recall
stabilised above 0.95 early in training.

With 2.59 million parameters and 6.4 GFLOPs, the nano variant
processed 640 X 640 images quickly without sacrificing accuracy.
Detection examples demonstrate the system’s ability to accurately
localize pollen grains with high confidence scores (Figure 5). The
confidence values range from 0.3 to 1.0. Overall, the detector met
its design goals: high accuracy and low false detections.

4.2 CNN Classification Performance

The ConvNeXt-based classification module demonstrated strong
and reproducible performance across multiple experimental set-
tings. Test accuracies ranged from 89.04% to 94.43%, depending
on architecture, loss function, augmentation strategy, and training
protocol. These results establish ConvNeXt Tiny as a baseline for
South African pollen classification while revealing the limits of
more complex techniques.

4.2.1 Baseline and Targeted Improvements. The original ConvNeXt
Tiny baseline achieved 93.51% test accuracy (Figure 6) with balanced
precision, recall, and F1-scores above 93%, surpassing the project’s
80-85% target. Conservative refinements produced the best overall
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Figure 6: Classification performance of Convnext-tiny

performance: a targeted ConvNeXt configuration with an enhanced
classifier, label smoothing, and moderate augmentation reached a
peak of 94.43% test accuracy and 94.97% validation accuracy. This
tied the best result later obtained by a larger ConvNeXt Base model.

4.2.2 Comparative Model and Strategy Analysis. Comparative test-
ing highlighted distinct performance profiles across CNN families
and testing strategies (Table 1), a visualisation is shown in Fig-
ure 11 (Appendix B) and an expanded table is shown in Table 5
(Appendix A). ConvNeXt Tiny outperformed both ResNet50 and
EfficientNet-B3, with diminishing returns when scaling to Con-
vNeXt Small or Base. Focal loss, often recommended for class im-
balance, consistently underperformed: across all architectures it
reduced F1-scores and occasionally collapsed small classes (e.g.,
Daisy_sp2). Similarly, overly aggressive augmentation strategies
(MixUp, CutMix, Gaussian blur, heavy erasing) degraded accuracy
to 91-92%. By contrast, test-time augmentation (TTA) produced
modest but stable improvements. The best configuration, Targeted
ConvNeXt with full TTA, achieved 94.66% test accuracy, a +1.15
percentage point gain over the baseline.

Table 1: Comparative CNN model results for pollen classifi-
cation.

Model / Strategy Test Acc Test F1 Val Acc
ConvNeXt Tiny (Baseline) 93.51% 93.61%  92.48%
Targeted ConvNeXt (Tiny) 94.43% 91.58%  94.97%
ConvNeXt Base (Advanced) 94.43% 93.20%  92.51%
ResNet50 + Focal Loss 92.11% 90.90% 90.15%
EfficientNet-B3 + Focal Loss  89.04% 88.26%  89.73%
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cations between similar taxa.

4.2.3  Per-Class Performance, Confusion Patterns, and Persistent
Challenges. While overall metrics were strong, class-level analysis
revealed persistent weaknesses. Performance varied widely across
taxa due to class imbalance and morphological similarity. Many
abundant taxa achieved perfect scores, including Apiaceae_sp1,
Aulax, Crassulaceae_sp1, Poaceae, and several Daisy species. How-
ever, extremely rare taxa consistently failed: PAL0016 (11 samples)
achieved 0% accuracy across all experiments, and Daisy_sp2 (8 sam-
ples) oscillated between complete failure (0%) and partial recovery
(62.5% recall). Accuracy strongly correlated with sample size: taxa
with 50 training samples frequently exceeded 90% accuracy, while
those with 20 often dropped below 70%. Confusion matrix analysis
(Figure 7) highlighted systematic misclassifications between mor-
phologically similar taxa, particularly Daisy_sp3 vs Daisy_sp4 and
PAL0016 vs PAL0014, with error rates exceeding 65-80%.

4.2.4 Summary. The classifier generally produced confident pre-
dictions, with over 90% of outputs exceeding 90% confidence. How-
ever, misclassified samples often retained relatively high confidence
(0.72-0.90), showing that confidence alone does not guarantee cor-
rectness. Weighted sampling, label smoothing, and focal loss pro-
vided partial mitigation for class imbalance, but rare taxa remained
difficult to classify consistently. Model accuracy showed a strong
dependence on sample size, with taxa represented by fewer than
20 grains often falling below 70% accuracy, while those with more
than 50 grains exceeded 90%.Confusion matrix analysis (Figure 8)
revealed systematic misclassifications between morphologically
similar taxa, especially within the Daisy group and among PAL
codes. These errors were consistent across models and reflected
genuine morphological overlap.
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Figure 8: Per-class acuuracy showing the misclassifications
of specific pollen types.

CNN Feature Clustering Analysis
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Figure 9: CNN feature clustering analysis using different
dimensionality reduction techniques. Top row shows cluster-
ing based on true taxonomic classes (top 20), while bottom
row shows HDBSCAN-discovered clusters.

4.3 Clustering Module Effectiveness

The HDBSCAN-based clustering module demonstrated strong po-
tential for validating supervised classification patterns and explor-
ing novel pollen types through unsupervised analysis of CNN fea-
ture embeddings. Operating on high-dimensional feature vectors
from the ConvNeXt model, the clustering pipeline achieved an Ad-
justed Rand Index (ARI) of 0.962, indicating close agreement with
expert-assigned taxonomic labels.

Figure 9 illustrates the effectiveness of different dimensional-
ity reduction techniques for visualizing pollen grain relationships.
With a minimum cluster size of 10 and 10 minimum samples, the
algorithm produced 78 distinct clusters from more than 7,600 grains,
assigning only 1.8% as noise. Most clusters were highly pure, with
77 out of 78 matching a single pollen type at over 90%. Notably,
taxa that were difficult for supervised classification formed clean
and homogeneous clusters. The 136 noise samples identified by
clustering represent promising candidates for novel pollen type
discovery.
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4.4 End-to-End Honey Authentication Results

The POL-ID pipeline was validated on eight independent South
African honey samples and one honey sample from Angola. In total,
1,307 slides and 3,969 pollen grains were processed (Table 2). Each
sample was classified according to ICBB thresholds, and results
were compared with manual melissopalynological analysis.

4.4.1 Pipeline Model Configuration. The end-to-end POL-ID pipeline
integrates three core components: YOLOv11-nano for pollen grain
detection (achieving 97.73% mAP@0.5), the baseline ConvNeXt
Tiny for species classification (achieving 92.96% accuracy) , and
HDBSCAN clustering for novel pollen type discovery (ARI = 0.883).
Due to technical constraints encountered during model retraining,
the pipeline validation employs a ConvNeXt model and clustering
module trained on 75 pollen taxa, while the architectural compar-
isons in Section 4.2 utilized models trained on an expanded 77-taxa
dataset. The detection module maintain consistent performance
across both configurations as it operates independently of the spe-
cific number of classification taxa.

4.4.2  Pipeline Performance Overview. The automated system pro-
cessed each sample in approximately 5-10 minutes. All nine samples
were assigned classifications consistent with ICBB standards, in-
cluding monofloral, mixed, and multifloral honeys.

Table 2: Overview of honey sample processing and classifica-
tion

Sample Slides Grains Classification

HS095 33 307 Monofloral (Celtis)

HS133 41 451 Monofloral (Lobostemon sp. 1)
HS135 192 351 Monofloral (PAL0019)

HS150 68 538 Multifloral

HS152 235 580  Mixed (Apiaceae sp. 1)

HS170 152 620 Multifloral

HS177 214 418 Multifloral

HS183 182 361 Multifloral

HS189 190 343 Multifloral

Total 1,307 3,969 -

4.4.3 Monofloral Honey Authentication. Three samples were clas-
sified as monofloral. The detailed comparison between automated
POL-ID analysis and manual melissopalynological analysis is shown
in Table 3.

4.4.4  Multifloral Honey Recognition. Three samples were classified
as multifloral. The comparison between automated and manual
analysis is presented in Table 4.

4.4.5 Uncertainty Handling and Novel Type Detection. Across all
samples, between 8.4% and 21.7% of grains were assigned to uncer-
tain categories. These included low-confidence CNN predictions
and clusters not matched to existing taxa.

4.4.6 Comparative Results with Manual Analysis. Automated clas-
sification matched manual assessments of honey type in all nine
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Table 3: Monofloral honey authentication results: POL-ID vs
manual analysis

Sample Taxon  POL-ID (%) Manual (%) Diff. (%)
Celtis 46.9 56.4 -9.5
HS095 (Celtis) Proteaceae  10.7 14.3 -3.6
sp. 1
Campanulac. 9.1 8.3 +0.8
PAL0019 45.3 56.3 -11.0
HS135 (PAL0019) PAL0018 11.1 16.8 -5.7
Brachystegia 6.8 18.2 -11.4
Lobostemon 55.4 78.3 -22.9
HS133 (Lobostemon)  sp. 1
Erica 5.8 9.7 -3.9
sp. 1
Vicia 0.7 3.5 -2.8
sp. 1

Table 4: Multifloral honey recognition results: dominant taxa
comparison

Sample Dominant POL-ID (%) Manual Manual (%)
Taxon Top Taxa
(POL-ID)
HS150 Lobostemon 19.1 Brassica. 19.6;17.0; 11.2
sp. 1 Sp. 25
PAL0010;
Apiaceae
sp. 1
HS170  PAL0013 11.5 Vahlia- 20.0; 14.8
type sp. 1;
Loboste-
mon sp. 1
HS177  Eucalyptus 12.0 Eucalyptus  32.2; 25.4
sp. 1 sp. 3; Eu-
calyptus
sp. 2
HS183  Lobostemon  14.7 Lobostemon 27.5
sp. 1 sp. 1
HS189  PAL0011 16.3 PAL0011;  29.0; 21.6; 7.1
Rham-
naceae
sp. 1;
Multiple
taxa tie

samples. However, quantitative analysis revealed systematic dif-
ferences in pollen abundance estimates. For monofloral honeys,
POL-ID consistently underestimated dominant pollen percentages
compared to manual analysis, with differences ranging from -9.5%
(Celtis) to -22.9% (Lobostemon sp. 1). The mixed honey sample
(HS152) was correctly classified with Apiaceae sp. 1 as the predom-
inant taxon, but POL-ID estimated 23.6% abundance versus 44%
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in manual analysis. Multifloral honey classifications showed vari-
able agreement in dominant taxa identification, with some samples
(HS183) showing good correspondence and others (HS150, HS189)
identifying different primary taxa than manual analysis. Despite
these quantitative discrepancies, all samples received correct ICBB-
compliant honey type classifications. Automated analysis required
5-10 minutes per sample compared to 180-300 minutes manually,
and repeated runs produced consistent outputs.

5 DISCUSSION

The findings of POL-ID show that automated pollen analysis can not
only complement but in many cases improve on traditional manual
methods, especially when applied to the complex and highly diverse
flora of South Africa.

5.1 Technical Performance and Methodological
Advances

5.1.1 Detection Module Achievements. The YOLOv11-nano detec-
tor achieved an mAP@0.5 of 97.73%, which is a substantial leap
from earlier pollen detection systems. For instance, He et al. [11]
reported precision of 0.663 and recall of 0.914 using YOLOv2, while
our system reached precision of 96.36% and recall of 96.58%. This im-
provement can be attributed both to advances in YOLO architecture
and to the carefully curated dataset, which included the varied imag-
ing conditions and morphologies typical of South African honey.
The detector’s ability to correctly identify background noise such as
debris and air bubbles, a recurring obstacle in microscopic analysis,
is important. Starting from COCO pre-trained weights allowed the
model to adapt natural-image features to pollen shapes, while the
lightweight YOLOv11-nano architecture ensures fast processing
for laboratory use.

5.1.2  Classification Performance and Architectural Choices. The
ConvNeXt-based classifier achieved 94.43% accuracy across 77
pollen taxa. Although some studies report higher accuracies with
97.99% on 16 Spanish taxa [12], or 98.15% on honey pollen [19],
our system worked with a completely new dataset and exceeded
our original research aims of obtaining an accuracy of between 80-
85%. ConvNeXt Tiny consistently outperformed not only ResNet50
and EfficientNet-B3 but also its larger sibling, ConvNeXt Small,
achieving comparable results to ConvNeXt Base despite having
significantly fewer parameters. This result supports recent find-
ings that architectural refinements often matter more than simply
scaling up model size [27]. Contrary to expectations, focal loss con-
sistently underperformed across all architectures tested. Standard
cross-entropy and label smoothing provided more reliable results
for this dataset.

5.1.3  Clustering Innovation for Uncertainty Quantification. HDB-
SCAN clustering achieved an Adjusted Rand Index (ARI) of 0.962,
showing strong alignment between CNN-derived features and ex-
pert taxonomy. This result highlights that the CNN learned features
with genuine morphological meaning. Unlike many past systems,
POL-ID incorporates uncertainty quantification through system-
atic noise detection, identifying 136 samples (1.8%) that fall outside
known taxonomic categories. The clustering analysis produced 78
distinct clusters from over 7,600 pollen grains, with 77 of 78 clusters
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exceeding 90% taxonomic purity. Interestingly, some poorly classi-
fied taxa (e.g., PAL0016) still formed coherent clusters. This suggests
that limited training data, rather than a failure of feature learning,
accounts for weaker supervised performance. Such insights point
the way towards more targeted data collection in future work.

5.2 Honey Authentication Performance and
Practical Validation

5.2.1 ICBB Compliance and Classification Accuracy. POL-ID suc-
cessfully classified all nine honey samples according to ICBB stan-
dards. This included monofloral honeys, mixed honeys, and complex
multifloral samples from different regions across South Africa and
Angola. The system correctly identified honey types even when
automated and manual pollen counts differed substantially (for
example, HS152, where Apiaceae representation was 23.6% ver-
sus 44.0%, or HS133 where Lobostemon was 55.4% versus 78.3%
manually). The model underestimated dominant pollen percent-
ages, which could cause problems in borderline cases. Although
the tested samples had enough margin for correct classification,
honeys with dominant taxa close to ICBB thresholds risk misclas-
sification. This was most evident in mixed honeys, where POL-ID
often missed the correct dominant taxon even if the overall honey
type was right. For commercial authentication, borderline cases
would still need manual checks to confirm botanical origin.

5.2.2  Processing Efficiency and Scalability. The system cut process-
ing time by an order of magnitude, reducing analysis from 180-300
minutes manually to just 15-20 minutes. This efficiency with re-
producibility across repeated runs, addresses the weaknesses of
manual analysis- subjectivity and inconsistency. In this study, POL-
ID processed 1,307 slides and analysed 3,969 grains, demonstrating
scalability well beyond what would be feasible by hand. If applied
at scale, such improvements could support authentication across
the country’s annual honey production.

5.3 Limitations and Technical Challenges

5.3.1 Morphological Convergence and Taxonomic Resolution. Con-
fusion between morphologically similar taxa reflects the limits of
image-based classification. The most problematic misclassifications
included PAL0016 vs PAL0019 (83.3% error rate), Monocot_sp_5
vs Lobostemon_sp_1 (34.3% error rate), and Eucalyptus_spl vs
PAL0018 (40.9% error rate). These are not failures unique to ma-
chine learning. Expert palynologists face the same difficulties [10].
For genera such as Eucalyptus, where pollen grains are notoriously
uniform [26], species-level identification may ultimately require
chemical or genetic data. The high error rates between taxonomi-
cally distinct groups (e.g., Monocot_sp_5 and Lobostemon_sp_1)
suggest that morphological convergence extends beyond closely re-
lated taxa. There is fundamental challenges of pollen identification
based solely on visual features.

5.3.2  Class Imbalance and Data Scarcity. Classification accuracy
correlated strongly with training sample size. Taxa with more than
100 training samples, such as Lobostemon_sp_1, Celtis, and Mono-
cot_sp_5, generally performed well, though even large classes
were not immune to errors (Monocot_sp_5 reached only 65.7%
accuracy). In contrast, underrepresented taxa consistently failed:
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PAL0016 with 11 samples scored 0%, while Daisy_sp2 (8 samples)
and PAL0022 (12 samples) showed erratic results. Weighted sam-
pling and focal loss helped to some degree, but the lack of data
cannot be fully offset by algorithms. Reliable performance appeared
to require at least 40-50 examples. Rare taxa will therefore need
targeted data collection, likely in collaboration with botanical insti-
tutions.

5.3.3 Dataset Expansion Challenges and Model Stability. Expand-
ing the model from 75 to 77 taxa exposed a key limitation of deep
learning. Although the original classes were unchanged and train-
ing accuracy remained high, the updated model performed worse in
the pipeline, with reliable taxa such as Celtis and Poaceae now mis-
classified. This form of catastrophic forgetting arises when adding
new classes reshapes the feature space and disrupts earlier decision
boundaries. The stability of the 75-class model highlights the need
to build balanced datasets from the start rather than adding classes
incrementally. For real-world use, this means updates must involve
careful rebalancing of the dataset. Future work should explore con-
tinual learning methods that expand taxonomic coverage without
sacrificing existing performance.

5.3.4 Conservative Classification and Threshold Effects. The chosen
70% confidence threshold ensured high precision but left 8-22% of
grains marked as uncertain. Relaxing this threshold could improve
quantitative accuracy, but the conservative setting has clear ad-
vantages. It prevents overconfident misclassification and provides
transparency, allowing human experts to step in where needed.

5.4 Implications for South Africa and Future
Directions

5.4.1 South Afircan Pollen Landscape Implications. South Africa’s
flora creates particular challenges for honey authentication. Wind-
blown pollen and the coexistence of diverse pollen complicate tra-
ditional manual methods [26]. POL-ID was built with these condi-
tions in mind, trained specifically on regional taxa and designed to
flag uncertain grains. The system’s adaptability through clustering
means it can accommodate new discoveries.

The economic and regulatory implications are equally signifi-
cant. Honey fraud is a global issue, costing producers hundreds
of millions of dollars annually [42]. Automated, standardised au-
thentication could help South African producers secure premium
markets, especially for distinctive honeys such as those from fynbos
regions. The ICBB-compliant output format ensures compatibility
with international requirements, while reduced reliance on special-
ist palynologists opens access to smaller-scale producers who may
previously have been excluded by cost.

Finally, the framework developed here has broader relevance.
The integration of detection, fine-grained classification, and un-
certainty quantification can be applied to other plant-based food
products where authenticity matters. If the system can handle South
Africa’s extreme taxonomic diversity, it is likely adaptable to other
biodiversity hotspots.

5.4.2  Future Directions. System performance could be improved
by integrating additional morphological descriptors such as size
and surface texture, or by combining image-based methods with
pollen chemistry or DNA barcoding. Ensemble architectures may
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further increase robustness. Active learning could guide efficient
expansion of training datasets by highlighting the most informative
new samples.

To sustain progress, a comprehensive South African pollen im-
age database is needed. Such a resource could be developed in
collaboration with universities and beekeeping associations. At
the international level, standardised databases and analysis proto-
cols could support comparative studies and expand the reach of
authenticated honey into global markets.

6 CONCLUSIONS

This work developed POL-ID, the first automated honey authen-
tication system tailored to South African pollen taxa. The sys-
tem integrates YOLOv11-nano object detection (97.73% mAP@0.5),
ConvNeXt-based classification (94.66% accuracy with test-time aug-
mentation), and HDBSCAN clustering (ARI = 0.962) to handle melis-
sopalynological complexity while maintaining ICBB compliance.
Validation on nine independent honey samples demonstrated cor-
rect classification of all honey types, though systematic underes-
timation of dominant pollen percentages revealed limitations for
borderline cases near classification thresholds.

Systematic evaluation across different experimental configura-
tions established that architectural refinements outperform complex
training strategies, with ConvNeXt consistently superior to ResNet
and EfficientNet architectures. Contrary to expectations, focal loss
degraded performance across all tested configurations, while stan-
dard cross-entropy with conservative augmentation proved most
effective for pollen classification.

Applying the pipeline to South African honeys, which draw on
one of the world’s richest floras, showed that the system can man-
age extreme taxonomic diversity. The approach is scalable, meaning
it could be extended to other regions facing similar challenges. The
system successfully manages South Africa’s exceptional taxonomic
diversity, demonstrating scalability for biodiversity hotspots where
traditional authentication struggles. Processing efficiency improved
while maintaining reproducibility. However, morphological con-
vergence between distant taxa and failures on severely underrepre-
sented classes highlight fundamental limitations requiring targeted
data collection strategies. Future work could integrate additional
data sources to refine species-level identification. Broader datasets
and active learning strategies could also improve coverage of rare
taxa.

In summary, POL-ID shows that automated systems can meet the
practical and scientific demands of honey authentication in a biodi-
versity hotspot. It demonstrates a path forward where Al augments
traditional palynology and can provide automated authentication.

REFERENCES

[1] Fatih Mehmet Avcu. 2024. Clustering honey samples with unsupervised machine
learning methods using FTIR data. Anais da Academia Brasileira de Ciéncias 96, 1
(2024). DOLhttps://doi.org/10.1590/0001-3765202420230409

Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. 2013. Density-Based
Clustering Based on Hierarchical Density Estimates. Advances in Knowledge Dis-
covery and Data Mining 7819, (2013), 160-172. DOLhttps://doi.org/10.1007/978-
3-642-37456-2_14

Davide Chicco. 2017. Ten quick tips for machine learning in computational biol-
ogy. BioData Mining 10, 1 (December 2017). DOLhttps://doi.org/10.1186/s13040-
017-0155-3

[2

&



POL-ID: Automated Honey Authentication Through Deep Learning-Based Pollen Grain Analysis

[4] Eduardo Corbella and Daniel Cozzolino. 2008. Combining Multivariate Anal-

[10

[11

[12]

[13

[14

[15

[17

(18

[19

[20

[21

[22

[23

]

]

]

]

ysis and Pollen Count to Classify Honey Samples Accordingly to Different
Botanical Origins. Chilean Journal of Agricultural Research 68, 1 (March 2008).
DOL:https://doi.org/10.4067/s0718-58392008000100010

Benoit Crouzy, Michelle Stella, Thomas Konzelmann, Bertrand Calpini, and
Bernard Clot. 2016. All-optical automatic pollen identification: Towards an op-
erational system. Atmospheric Environment 140, (September 2016), 202-212.
DOLhttps://doi.org/10.1016/j.atmosenv.2016.05.062

David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1, 2 (April
1979), 224-227. DOLhttps://doi.org/10.1109/TPAMI.1979.4766909

Ekberjan Derman. 2021. Dataset Bias Mitigation Through Analysis
of CNN Training Scores. arXiv (Cornell University) (January 2021).
DOLhttps://doi.org/10.48550/arxiv.2106.14829

Dilpreet Singh Brar, Ashwani Kumar Aggarwal, Vikas Nanda, Sudhanshu Saxena,
and Satyendra Gautam. 2023. Al and CV based 2D-CNN Algorithm: Botanical
Authentication of Indian Honey Varieties. Sustainable Food Technology (January
2023), 373-385. DOL:https://doi.org/10.1039/d3fb00170a

Susanne Dunker, Matthew Boyd, Walter Durka, Silvio Erler, W Stanley Harpole,
Silvia Henning, Ulrike Herzschuh, Thomas Hornick, Tiffany Knight, Stefan Lips,
Patrick Mader, Elena Motivans Svara, Steven Mozarowski, Demetra Rakosy,
Christine Rémermann, Mechthild Schmitt-Jansen, Kathleen Stoof-Leichsenring,
Frank Stratmann, Regina Treudler, and Risto Virtanen. 2022. The potential of
multispectral imaging flow cytometry for environmental monitoring. Cytometry
Part A 101, 9 (June 2022), 782-799. DOLhttps://doi.org/10.1002/cyto.a.24658
Ariadne Barbosa Gongalves, Junior Silva Souza, Gercina Gongalves da Silva,
Marney Pascoli Cereda, Arnildo Pott, Marco Hiroshi Naka, and Hemerson
Pistori. 2016. Feature Extraction and Machine Learning for the Classification
of Brazilian Savannah Pollen Grains. PLOS ONE 11, 6 (June 2016), e0157044.
DOTL:https://doi.org/10.1371/journal.pone.0157044

Chloe He, Alexis Gkantiragas, and Gerard Glowacki. 2018. Honey Authentica-
tion with Machine Learning Augmented Bright-Field Microscopy. arXiv preprint
arXiv:1901.00516.

José Miguel Valiente, Marisol Juan-Borrés, Fernando Lopez-Garcia, and Isabel
Escriche. 2023. Automatic pollen recognition using convolutional neural net-
works: The case of the main pollens present in Spanish citrus and rosemary
honey. Journal of Food Composition and Analysis 123 (August 2023), 105605.
DOL:https://doi.org/10.1016/j.jfca.2023.105605

Redmon Joseph, Divvala Santosh, Girshick Ross, and Farhadi Ali. 2016. You
Only Look Once: Unified, Real-Time Object Detection. arXiv (Cornell University)
(January 2016). DOLhttps://doi.org/10.48550/arxiv.1506.02640

Y. Kaya, M. E. Erez, O. Karabacak, L. Kayci, and M. Fidan. 2013. An automatic
identification method for the comparison of plant and honey pollen based on
GLCM texture features and artificial neural network. Grana 52, 1 (February 2013),
71-77. DOLhttps://doi.org/10.1080/00173134.2012.754050

Elzbieta Kubera, Agnieszka Kubik-Komar, Pawel Kurasinski, Krystyna
Piotrowska-Weryszko, and Magdalena Skrzypiec. 2022. Detection and Recogni-
tion of Pollen Grains in Multilabel Microscopic Images. Sensors 22, 7 (March
2022), 2690-2690. DOLhttps://doi.org/10.3390/s22072690

Zhiheng Li, Tongcheng Gu, Bing Li, Wubin Xu, Xin He, and Xiangyu Hui.
2022. ConvNeXt-Based Fine-Grained Image Classification and Bilinear At-
tention Mechanism Model. Applied Sciences 12, 18 (September 2022), 9016.
DOL:https://doi.org/10.3390/app12189016

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal Loss for Dense Object Detection. arXiv (Cornell University) (August 2017).
DOL:https://doi.org/10.48550/arxiv.1708.02002

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor
Darrell, and Saining Xie. 2022. A ConvNet for the 2020s. (January 2022).
DOLhttps://doi.org/10.48550/arxiv.2201.03545

Fernando Lépez-Garcia, José Miguel Valiente-Gonzalez, Isabel Escriche-Roberto,
Marisol Juan-Borras, Mario Visquert-Fas, Vicente Atienza-Vanacloig, and Manuel
Agusti-Melchor. 2023. Classification of Honey Pollens with ImageNet Neural
Networks. Lecture Notes in Computer Science 14185 (January 2023), 192-200.
DOL:https://doi.org/10.1007/978-3-031-44240-7_19

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
arXiv.org. DOLhttps://doi.org/10.48550/arXiv.1711.05101

Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, and Sanjiv Kumar.
2020. Does label smoothing mitigate label noise? arXiv (Cornell University)
(January 2020). DOLhttps://doi.org/10.48550/arxiv.2003.02819

Tahir Mahmood, Jiho Choi, and Kang Ryoung Park. 2023. Artificial
intelligence-based classification of pollen grains using attention-guided
pollen features aggregation network. Journal of King Saud University
- Computer and Information Sciences 35, 2 (February 2023), 740-756.
DOL:https://doi.org/10.1016/j.jksuci.2023.01.013

Claudia Malzer and Marcus Baum. 2020. A Hybrid Approach To Hierarchical
Density-based Cluster Selection. 2020 IEEE International Conference on Multi-
sensor Fusion and Integration for Intelligent Systems (MFI) (September 2020),

[24

[25

[26

~
=

[28

[29

[30

w
=

[32

[33

[35

[36

[37

[38

[39

[40

[41

]

]

Honours Project, 2025, University of Cape Town

223-228. DOLhttps://doi.org/10.1109/MFI49285.2020.9235263

Mashudu Patience Mamathaba, Kowiyou Yessoufou, and Annah Moteetee.
2022. What Does It Take to Further Our Knowledge of Plant Diversity
in the Megadiverse South Africa? Diversity 14, 9 (September 2022), 748.
DOLhttps://doi.org/10.3390/d14090748

Leland McInnes, John Healy, and James Melville. 2020. UMAP: Uniform
Manifold Approximation and Projection for Dimension Reduction. arXiv.org.
DOLhttps://doi.org/10.48550/arXiv.1802.03426

Nikiwe Ndlovu, Frank H. Neumann, Michelle D. Henley, Robin M. Cook, and
Chevonne Reynolds. 2023. Melissopalynological investigations of seasonal honey
samples from the Greater Kruger National Park, Savanna biome of South Africa.
Palynology (February 2023). DOLhttps://doi.org/10.1080/01916122.2023.2179679
Ola Olsson, Melanie Karlsson, Anna S. Persson, Henrik G. Smith, Vidula Varadara-
jan, Johanna Yourstone, and Martin Stjernman. 2021. Efficient, automated and
robust pollen analysis using deep learning. Methods in Ecology and Evolution 12,
5 (March 2021), 850-862. DOL:https://doi.org/10.1111/2041-210x.13575

PyTorch Contributors. 2025. ReduceLROnPlateau. Pytorch.org. Retrieved Sep-
tember 4, 2025 from https://docs.pytorch.org/docs/stable/generated/torch.optim.
Ir_scheduler.ReduceLROnPlateau.html?

Peter J. Rousseeuw. 1987. Silhouettes: a Graphical Aid to the Interpretation and
Validation of Cluster Analysis. Journal of Computational and Applied Mathe-
matics 20, 0377-0427 (November 1987), 53-65. DOL:https://doi.org/10.1016/0377-
0427(87)90125-7

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A survey on Image Data
Augmentation for Deep Learning. Journal of Big Data 6, 1 (July 2019).
DOTL:https://doi.org/10.1186/540537-019-0197-0

Nima Tajbakhsh, Jae Y. Shin, Suryakanth R. Gurudu, R. Todd Hurst, Christo-
pher B. Kendall, Michael B. Gotway, and Jianming Liang. 2016. Convolu-
tional Neural Networks for Medical Image Analysis: Full Training or Fine
Tuning? IEEE Transactions on Medical Imaging 35, 5 (May 2016), 1299-1312.
DOTL:https://doi.org/10.1109/tmi.2016.2535302

Ofijan Tesfaye, Asnake Desalegn, and Diriba Muleta. 2024. Melissopalynological
analysis and microbiological safety of fresh and market honey (Apis mellifera L.
and Meliponula beccarii L.) from Western Oromia, Ethiopia. Heliyon 10, 7 (April
2024), €28185-e28185. DOL:https://doi.org/10.1016/j.heliyon.2024.e2818
Wei-Ming Thor. 2025. Data Transformations (‘torchvision.transforms’).
Apxml.com. Retrieved September 4, 2025 from https://apxml.com/courses/getting-
started-with-pytorch/chapter-5-efficient-data-handling/data-transformations-
torchvision-transforms?

Nikos Tsiknakis, Elisavet Savvidaki, Georgios C. Manikis, Panagiota Got-
siou, Ilektra Remoundou, Kostas Marias, Eleftherios Alissandrakis, and Niko-
las Vidakis. 2022. Pollen Grain Classification Based on Ensemble Trans-
fer Learning on the Cretan Pollen Dataset. Plants 11, 7 (March 2022), 919.
DOLhttps://doi.org/10.3390/plants11070919

Werner Von Der Ohe, Livia Persano Oddo, Maria Lucia Piana, Monique Morlot,
and Peter Martin. 2004. Harmonized methods of melissopalynology. Apidologie
35, Suppl. 1 (2004), S18-S25. DOLhttps://doi.org/10.1051/apido:2004050
Matthijs J. Warrens and Hanneke van der Hoef. 2022. Understanding the
Adjusted Rand Index and Other Partition Comparison Indices Based on
Counting Object Pairs. Journal of Classification 39, 3 (July 2022), 487-509.
DOTL:https://doi.org/10.1007/s00357-022-09413-z

Alexander Wong, Mahmoud Famuori, Mohammad Javad Shafiee, Francis Li, Bren-
dan Chwyl, and Jonathan Chung. 2019. YOLO Nano: a Highly Compact You Only
Look Once Convolutional Neural Network for Object Detection. arXiv (Cornell
University) (January 2019). DOLhttps://doi.org/10.48550/arxiv.1910.01271
Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi. 2018.
Convolutional Neural networks: an Overview and Application in Radiology. In-
sights into Imaging 9, 4 (June 2018), 611-629. DOLhttps://doi.org/10.1007/s13244-
018-0639-9

Muhammad Yaseen. 2024. What is YOLOv8: An In-Depth Exploration of the Inter-
nal Features of the Next-Generation Object Detector. arXiv (Cornell University)
(August 2024). DOLhttps://doi.org/10.48550/arxiv.2408.15857

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How
transferable are features in deep neural networks? (November 2014).
DOLhttps://doi.org/10.48550/arxiv.1411.1792

Zahra Shakoori, Ahmadreza Mehrabian, Dariush Minai, Farid Salmanpour, and
Farzaneh Khajoei Nasab. 2023. Assessing the quality of bee honey on the basis of
melissopalynology as well as chemical analysis. PLOS ONE 18, 8 (August 2023),
€0289702-€0289702. DOLhttps://doi.org/10.1371/journal.pone.0289702
Xiao-Hua Zhang, Hui-Wen Gu, Ren-Jun Liu, Xiang-Dong Qing, and Jin-Fang
Nie. 2023. A comprehensive review of the current trends and recent advance-
ments on the authenticity of honey. Food Chemistry: X 19 (October 2023), 100850.
DOEL:https://doi.org/10.1016/j.fochx.2023.100850


https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html?
https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html?

Honours Project, 2025, University of Cape Town Maryam Mather

A SUPPLEMENTARY DATA

Table 5: Comparative CNN model results for pollen classification.

Model / Strategy Key Feature Test Acc  TestF1 ~ Val Acc
Targeted ConvNeXt + Full ~ Augmented inference 94.66%  91.18% -
TTA

Targeted ConvNeXt (Tiny) Label smoothing + classifier 94.43%  91.58%  94.97%
ConvNeXt Base (Ad- Larger model + multi-techniques 94.43%  93.20%  92.51%
vanced)

ConvNeXt Tiny (Baseline) ~ Standard setup 93.51%  93.61%  92.48%
ConvNeXt Tiny + CrossEn-  Enhanced training 93.42%  9291%  94.41%
tropy

ConvNeXt Tiny + Label Label smoothing 92.61%  92.19%  93.42%
Smooth

ConvNeXt Small + Focal Larger model 92.54%  92.12%  91.85%
Loss

ConvNeXt Tiny + Focal Focal loss + sampling 92.42%  91.52%  93.20%
Loss

ResNet50 + Focal Loss Alternative architecture 92.11%  90.90%  90.15%
Enhanced ConvNeXt Tiny ~ Over-engineered pipeline 91.96%  91.18%  88.28%
ConvNeXt Tiny + Focal Repeat focal loss 91.64%  90.43%  91.61%
(v2)

EfficientNet-B3 + Focal Advanced architecture 89.04%  88.26%  89.73%

Loss

B ADDITIONAL FIGURES

Figure 10: Some from the 77 distinct pollen types show the morphological complexity handled by the POL-ID system.
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Figure 11: Comparison of different CNN architectures.



	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Materials and Methods
	3.1 Dataset Development and Preparation
	3.2 Pollen Grain Detection Module
	3.3 CNN-Based Pollen Classification Module
	3.4 Novel Pollen Type Discovery Through Clustering
	3.5 Honey Authentication Pipeline

	4 Results
	4.1 Detection Module Performance
	4.2 CNN Classification Performance
	4.3 Clustering Module Effectiveness
	4.4 End-to-End Honey Authentication Results

	5 Discussion
	5.1 Technical Performance and Methodological Advances
	5.2 Honey Authentication Performance and Practical Validation
	5.3 Limitations and Technical Challenges
	5.4 Implications for South Africa and Future Directions

	6 Conclusions
	References
	A Supplementary Data
	B Additional Figures

