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Abstract

Authenticating the botanical origins of honey is crucial for com-
bating food fraud. Traditional pollen analysis (melissopalynology)
is slow and requires specialised expertise, creating a bottleneck
for scalable quality control. This research develops and evaluates
an end-to-end deep learning pipeline for automating this process
in the South African context, guided by three research questions:
(i) how accurately modern object detectors, including YOLO vari-
ants and DETRs, can localise pollen grains in microscopy slides,
(ii) to what extent hybrid CNN-Vision Transformer architectures,
implemented through sequential and parallel fusion strategies, can
achieve high-accuracy classification of South African pollen grains,
and (iii) whether unsupervised clustering of feature embeddings
can reliably identify novel or unlabeled pollen types for expert
review. Experimental results show that YOLO-based detectors out-
perform DETRs, with the best model achieving a mean average
precision (mAP@50-95) above 0.92, while hybrid classifiers ex-
ceed 95% accuracy. The final, optimised pipeline was validated by
comparing its analysis of honey-slide images to the findings of
expert-led microscopy. This evaluation revealed only a moderate
level of alignment: the pipeline produced reasonable honey classifi-
cations but showed inconsistencies in identifying dominant taxa.
These limitations stem largely from class imbalance in the dataset
and error propagation between detection and classification stages.
Overall, the system demonstrates strong potential as a scalable tool
for honey authentication in South Africa, while also highlighting
key areas for improvement.
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1 Introduction

The global honey market is susceptible to food fraud, where pre-
mium monofloral honeys are often adulterated with cheaper alterna-
tives or their botanical and geographical origins are misrepresented
[50]. Authenticating the source of honey is therefore crucial, not
only for consumer protection and fair trade but also for preserving
the economic integrity of regional apiculture. For South Africa,
whose rich and unique biodiversity produces highly sought-after
honeys [33], robust authentication methods are essential.

The traditional gold standard for determining honey’s botan-
ical origin is melissopalynology—the microscopic identification

and quantification of pollen grains within a honey sample. This
discipline, however, presents a significant bottleneck for scalable
honey authentication. The process is slow, labour-intensive, and
demands a high level of specialized expertise, which is scarce. Fur-
thermore, the analysis can be subjective, leading to inconsistencies
even among trained experts [34].

To overcome these challenges, this research develops and vali-
dates an end-to-end deep learning pipeline designed to automate
the botanical authentication of South African honey. This work
addresses three core research questions. First, how do state-of-the-
art object detectors, including YOLO variants and DETRs, perform
in localising pollen grains in honey slide images? Second, to what
extent can hybrid CNN-Vision Transformer architectures, imple-
mented through sequential and parallel fusion strategies, achieve
high-accuracy classification of South African pollen grains? Third,
can unsupervised clustering of feature embeddings (using HDB-
SCAN) reliably identify novel or unlabeled pollen types for expert
review? To answer these questions, this study evaluates multiple
detection architectures, benchmarks hybrid classification strategies,
and integrates clustering into the pipeline. The final system is vali-
dated by comparing its palynological profiles with those produced
by an expert melissopalynologist. While the models achieve strong
performance in isolation, the end-to-end pipeline reveals important
limitations, including the effects of heavy class imbalance and error
propagation from imperfect detections to subsequent classification.
These factors underscore both the promise of automated honey
authentication and the need for further refinement.

2 Related Work

The development of automated systems for pollen identification
bridges traditional melissopalynology with recent advancements in
computer vision and deep learning. This section explores the state
of the field, the technical approaches that underpin recent successes,
and the specific challenges of South African honey authentication
that this work addresses.

2.1 The State of Automated Melissopalynology

Traditional melissopalynology relies on expert visual inspection of
microscopic slides, a process prone to error when differentiating
between morphologically similar plant species or detecting pollen
in filtered honeys [2]. While the International Commission for Bee
Botany (ICBB) has introduced methodological standards, incon-
sistencies between experts remain widespread [9, 34]. Alternative
approaches such as chemical profiling and DNA barcoding show
promise, but their reliability and cost-effectiveness remain limited
[25, 50].
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Automated image-based methods using deep learning have demon-
strated state-of-the-art performance in pollen recognition across
several domains including forensics, allergology, and agriculture
[12, 22]. However, existing tools such as Honey.ai and AlPollen
are trained on non-African datasets and do not generalize to South
African honey samples [49]. Current public datasets remain region-
specific, with prominent collections from Spain [30, 47], New Zealand
[23], Brazil [13], and India [19]. No large-scale, publicly available
dataset of South African honey pollens currently exists, leaving a
critical gap in regional honey authentication.

2.2 Technical Approaches in Automated Pollen
Analysis

2.2.1 Data Preprocessing and Augmentation. Data quality and scale
are consistently identified as key determinants of classification ac-
curacy. Preprocessing techniques such as duplicate removal and the
exclusion of blurred images are common [45], while augmentation
strategies such as blurring, sharpening, histogram equalization,
haze reduction, noise injection, flipping, and rotation are used to
increase dataset size and diversity [31, 44, 48].

2.2.2  Detection and Segmentation. Since honey microscopy images
typically contain multiple, overlapping grains, an accurate detection
stage is essential before classification [39]. A range of approaches
have been proposed. Proprietary systems such as MATLAB’s Image
Processing Toolbox [35] and the Classifynder system [23, 44] ex-
ist, but open-source methods dominate recent work. YOLO-based
detectors have been trained for pollen detection and segmentation
with high bounding-box accuracy but some limitations in mask
generation [14, 20]. CNN-based segmentation architectures such
as U-Nets achieve strong performance on complex mixtures but
at a high computational cost [3, 48]. Two-stage detectors such as
Faster-RCNN and Mask-RCNN have achieved very high detection
and segmentation accuracy, particularly when objects are small
or overlapping, although they operate more slowly than YOLO
[10, 41].

2.2.3 Classification Methods. Pollen classification has advanced
from handcrafted feature extraction [46] to deep learning, with
CNNs dominating the literature. Both from-scratch models [31, 45]
and pre-trained architectures [30, 43] have been tested. While from-
scratch CNNs can outperform alternatives when very large datasets
are available, pre-trained networks consistently achieve superior
results under constrained data conditions [43].

Deep CNNs such as InceptionV3 and ResNeSt-101 have reached
accuracies exceeding 97-98% [30, 43], although this comes at sig-
nificant computational cost. Shallower models like ResNet-18 and
VGG16 achieve comparable results in some studies [30, 35], par-
ticularly when the number of classes is restricted. Indeed, model
accuracy is closely tied to the number of pollen species: perfor-
mance tends to degrade as class diversity increases, but can be
recovered with deeper models or larger datasets [1, 21, 45].

More recently, Vision Transformers (ViTs) have been tested in
pollen analysis [17, 19]. ViTs can outperform CNNs on the classifica-
tion task, though they typically require larger datasets to generalize
effectively [37]. Consequently, CNNs remain the architecture of
choice for most current pollen classification studies.
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2.2.4  Clustering for Novel Pollen Types. Unsupervised clustering
offers a means of handling unlabelled or novel pollen species. Daocod
et al. [7] demonstrate that hierarchical clustering combined with
CNNs or LSTMs can improve classification accuracy, while Caron et
al. [4] show that alternating clustering with CNN training enables
self-supervised learning that rivals supervised baselines. Although
clustering alone underperforms CNNs for classification [40], its
integration with supervised methods is promising for the authenti-
cation of South African honey.

2.3 Identified Gaps and Contributions

The literature reveals several gaps. First, deep learning solutions
are currently region-specific, with no publicly available dataset
covering the botanically diverse South African context. Second,
many existing systems address only classification of pre-cropped
grains and neglect the detection stage, limiting their utility for real
honey analysis. Third, while CNNs dominate, Transformers remain
underexplored in pollen recognition due to their data demands, and
clustering techniques have yet to be fully integrated into end-to-end
systems.

This project addresses these gaps by: (1) developing the first
comprehensive South African pollen dataset in collaboration with
the University of Cape Town’s Department of Chemistry; and (2)
building and validating a complete pipeline that integrates detec-
tion, classification, and clustering, balancing accuracy, adaptability,
and computational feasibility.

3 Methodology

This section details the models, software, and hardware utilized in
this work. All model training and pipeline scripts were executed
on the University of Cape Town (UCT) High-Performance Cluster,
using a NVIDIA L40S GPU.

3.1 Datasets and Preprocessing

As this project involved training both a detector and a classifier, it
required the creation of two distinct datasets. Both datasets contain
light microscopy images of honey slides, which were captured and
annotated by collaborators in the Department of Chemistry at UCT.

3.1.1 Detection Dataset. The detection dataset consists of 421 honey
slide images, which contain a total of 1330 manually annotated

pollen grain bounding boxes. Annotations were created using the

Computer Vision Annotation Tool (CVAT). The dataset was parti-
tioned into training (70%), validation (15%), and test (15%) sets. An

example of an annotated image is shown in Figure 1.

Prior to training, all images were preprocessed for auto-orientation
using Roboflow. Subsequently, to improve generalization and miti-
gate overfitting, an extensive set of online data augmentations was
employed. These can be broadly categorized into three main types:

Geometric augmentations included standard transforms like ran-
dom horizontal flipping, scaling, and cropping. Photometric aug-
mentations manipulated the color space by randomly adjusting
image properties such as hue, saturation, and value to simulate dif-
ferent lighting conditions. Finally, composite augmentations created
novel training samples from existing ones. This included Mosaic
augmentation, which combines four training images to expose the
model to objects at different scales, and MixUp, which generates
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Figure 1: Example of an annotated image from the detection
dataset. All pollen grains are enclosed in bounding boxes.

new samples by blending pairs of images and their labels, thereby
improving generalization.

3.1.2 Classification Dataset. The classification dataset was con-
structed from an initial set of 5643 images covering 77 pollen taxa.
Reference plates for all taxa can be found in Appendix C. The source
images were captured at multiple focal depths, resulting in several
images for each unique set of pollen grains. To manage this struc-
ture, images corresponding to a single set of grains were grouped
into ‘stacks’.

To prevent data leakage, the dataset was partitioned at the stack
level into training (70%), validation (15%), and test (15%) sets, en-
suring that all images from a given stack belonged exclusively to
one split.

Each source image was annotated with a single target taxon, and
only grains of that taxon were labeled using CVAT, as shown in Fig-
ure 2. A custom script was developed to process these annotations
by cropping each labeled pollen grain, thereby creating the final
dataset, which consisted of a total of 7594 individual grain images
across 710 stacks. While this averaged 9.2 stacks per taxon, the data
distribution was highly imbalanced. Stack counts per taxon ranged
from a minimum of 3 to a maximum of 29. This imbalance was
more pronounced in the final training data: the number of cropped
grains per taxon averaged 98.6 with a standard deviation of 83.8,
and ranged from a low of 24 to a high of 658.

All cropped pollen images underwent a standardized prepro-
cessing pipeline: they were resized to 224 X 224 pixels and normal-
ized using the standard ImageNet mean and standard deviation.
To enhance model robustness, several online data augmentation
strategies were applied during training.

The training augmentation included Random Resized Crop (scal-
ing between 80% and 100%), Random Horizontal and Vertical Flips,
Random Rotation (up to 45 degrees), Color Jitter, and Random Eras-
ing.

3.2 Pollen Detection Models

To identify the optimal architecture for pollen grain detection, a
comparative study of two major types of modern object detectors
was conducted. All evaluated models were pretrained on the COCO
dataset [24].

Figure 2: Example of an annotated source image from which
individual pollen grains were cropped. Only a single taxon
is annotated.

3.2.1 Single-Stage Detectors. Single-stage detectors perform object
detection in a single step and are known for their high inference
speed [52]. Several prominent variants were evaluated.

The first family of models was YOLO-based, including Ultralytics
implementations (YOLOv8 and YOLO11) and YOLOX from the
MMDetection library. The Ultralytics models balance speed and
accuracy, with the YOLO11s model achieving a mAP@50-95 of 47.0
and inference speeds as low as 2.5ms on COCO [18]. YOLOX was
selected for its performance, having offered a better speed-accuracy
tradeoff than other state-of-the-art models at its time of release,
and its permissive license [11]. An RTMDet model was also trained,
which is a real-time detector with improved speed and accuracy
over YOLOX and YOLOv7 [29].

The Ultralytics models were trained using their native Python li-
brary, while YOLOX and RTMDet were trained using MMDetection.
All single-stage detectors were trained with a learning rate of 0.01
and a batch size of 16 for 100-300 epochs, with early stopping to
prevent overfitting. The ‘small’ version of each model was initially
used to establish a comparable performance baseline, with the nano,
small, and medium variants of YOLO11 and YOLOvVS8 eventually
being tested as well.

3.2.2  Transformer-Based Detectors. In contrast to the single-stage
approach, two Detection Transformers (DETRs) were also trained.
These models reframe object detection as a set prediction problem
[52].

The first model was based on the DEIM framework (DETR with
Improved Matching), which incorporates a dense matching strat-
egy and novel loss function to boost performance, outperforming
models like YOLO11 on COCO [16]. The model variant used was
based on D-FINE, a DETR that refines probability distributions for
bounding boxes [38], trained using the DEIMKit library [8].

The second model was RF-DETR, a real-time DETR implemented
by Roboflow [42]. It is built upon state-of-the-art models including
LW-DETR [5], DINOv2 [36], and Deformable DETR [51], achieving
high accuracy and speed.

Both DETR models were trained for 200 epochs with a batch
size of 16 and a learning rate of 1 X 107%. Pre-trained ‘small’ model
variants were used in both cases.
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3.3 Pollen Classification Models

For pollen classification, two hybrid CNN-Vision Transformer ar-
chitectures were evaluated. These were implemented using the
timm library. All models were pretrained on the ImageNet dataset.

3.3.1 Sequential Fusion (CoAtNet). The first architecture was CoAt-
Net, a sequential fusion model that vertically stacks convolution and
attention layers to improve efficiency and generalization [6]. The
specific model used was pretrained on the ImageNet-12K dataset
and fine-tuned on ImageNet-1K.

3.3.2  Parallel Fusion (ConvNeXt + Swin Transformer). The second
architecture was a parallel fusion of a ConvNeXt [27] and a Swin
Transformer [26]. ConvNeXt models are pure convolutional net-
works designed to emulate modern vision transformers, while Swin
Transformers use shifted windows to apply self-attention efficiently
to local image regions. Both excel at extracting features from local
and global contexts.

The parallel fusion model uses ‘small’ Swin and ConvNeXt
(both pretrained on ImageNet-1K) backbones to extract feature
vectors (size 768 each), which are concatenated into a single 1536-
dimensional embedding. This embedding is then passed to a 5-layer
MLP classifier head. The head consists of a fully connected layer
mapping the 1536-dimensional embedding to 1024 units, followed
by batch normalization, a ReLU activation, and a dropout layer with
probability 0.5 to reduce overfitting. Finally, it uses another fully
connected layer that outputs predictions over the target number of
classes. A diagram of the parallel fusion architecture is shown in
Figure 3.

3.3.3 Training Strategy. A common two-phase training process
was used for both fusion models. This approach represents a stan-
dard best practice for transfer learning, built upon principles like
gradual unfreezing [15], and is designed to maximize model per-
formance while ensuring training stability. The strategy mitigates
the risk of "catastrophic forgetting," where large gradients from
a randomly initialized classifier head can damage the pre-trained
weights of the backbone.

e Phase 1: The model backbones were frozen, and only the
classifier head was trained for 25 epochs with a learning
rate of 1 X 1073, This initial phase stabilizes the classifier
head by allowing it to learn a reasonable mapping from the
backbone’s features to the target classes without corrupting
the pre-trained weights.

o Phase 2: All layers were unfrozen, and the entire model was
fine-tuned for 50 epochs. The learning rate for the classifier
head was reduced to 5 x 10™%, while the backbones used a
learning rate of 1 x 10~%. This allows the pretrained back-
bones to fine-tune their feature representations, aligning
them more closely with the statistical distribution of the
target pollen data.

A batch size of 16 was used for all experiments. The AdamW op-
timizer was chosen for its improved generalization in image clas-
sification tasks [28]. A cross-entropy loss function was used. This
was unweighted in initial experiments, but a weighted version was
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also tested to address class imbalance. Further experiments involv-
ing automated hyperparameter optimization with RayTune and a
three-phase training strategy were also explored.

3.4 Unsupervised Clustering of Unknown
Grains

To analyze pollen grains that the classifier could not identify with
high confidence, the Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) algorithm [32] was used.
HDBSCAN is advantageous as it does not require a predefined
number of clusters and can identify clusters of arbitrary shape
while effectively managing noise. Clustering was performed on
feature embeddings extracted from the classification model, with
parameters set to a minimum cluster size of 5 and a minimum
samples value of 5, making the algorithm more conservative. Cosine
similarity was used to measure distances between feature vectors, as
it is effective for high-dimensional data. Pollen grains not assigned
to any cluster were labeled as noise, isolating novel groupings from
outliers.

3.5 End-to-End Authentication Pipeline

The trained models and clustering algorithm were integrated into
a fully automated pipeline to process raw microscope images and
generate a detailed palynological profile. The workflow is depicted
in Figure 4.

The analysis begins with a set of microscope slide images from
a honey sample. The pipeline executes the following sequence:

(1) Detection and Cropping: The detection model scans the
images to localize pollen grains. Detections exceeding a con-
fidence threshold D are cropped from the image using their
bounding box, with a 10-pixel padding added to ensure the
entire grain is captured.

(2) Classification: Each cropped image is passed to the clas-
sification model, which extracts a feature embedding and
predicts a taxon with a corresponding confidence score.

(3) Clustering: A classification confidence threshold C is ap-
plied. Grains with confidence > C are considered identified.
Grains with confidence < C are labeled 'unknown’, and their
feature embeddings are passed to the unsupervised cluster-
ing module.

(4) Final Output: The system aggregates counts from classified
and clustered grains to produce a final pollen composition
report. This report details the percentage representation of
identified taxa and provides a quantitative breakdown of
unknown clusters. The final output includes a honey classi-
fication, a summary bar chart, a CSV file of the results and
exemplar images of clusters for expert review.

The thresholds D and C were calibrated empirically. The optimal
detection threshold (D) acts as the primary filter for low-quality
detections, helping to discard poor crops. These poor crops typically
consist of partial grains located at the image boundary, malformed
grains or false positives on non-pollen debris. The classification
threshold (C) serves as a secondary filter. Poor crops that pass initial
detection often receive low confidence scores from the classifier,
so threshold C helps isolate these ambiguous grains for clustering,
managing uncertainty while avoiding clustering high-confidence
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Figure 3: A model architecture diagram illustrating the parallel fusion classification model.
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Figure 4: An architecture diagram illustrating the final honey
authentication pipeline.

grains. The detailed analysis supporting these choices is presented
in Section 4.3.

4 Results and Discussion

This section introduces the metrics used to evaluate the models,
clustering algorithm and final pipeline in this study. It presents the
evaluation results for each module and discusses their implications
for model choice and overall system viability.

4.1 Detection Performance

The detection model for the final pipeline was selected via a two-
stage evaluation process. The initial stage involved a comparative
analysis of ‘small’ variants from each candidate architecture to
identify the most promising model families. In the second stage, a
focused analysis on the most successful model families was con-
ducted, evaluating different model sizes to find the best trade-off
between accuracy and performance.

4.1.1 Initial Model Evaluation. The initial evaluation of ‘small’ de-
tection models revealed a clear stratification in performance on the
pollen grain dataset. As detailed in Table 1, the Ultralytics YOLO
models demonstrated superior performance, with both YOLOv8s
and YOLO11s achieving mean Average Precision (mAP@50-95)
scores above 0.92. Transformer-based architectures performed com-
petently but fell short of this level, with RFE-DETR-S reaching 0.894
and DEIM-DFINE-S 0.867. Their underperformance is likely attrib-
utable to the limited size of the training dataset (1330 grains), as
transformer-based architectures typically require larger amounts
of data to converge effectively compared to CNN-based models
like YOLO. The MMDetection models, YOLOX-S and RTMDet-S,
underperformed substantially with mAP@50-95 scores below 0.78;
as relatively older architectures, their weaker performance is not
unexpected.

Notably, all models achieved a mAP@50 above 0.92. This indi-
cates that while every architecture could reliably localize pollen
grains at the IoU = 0.5 threshold, the Ultralytics models excelled at
producing highly precise bounding boxes, as reflected in the stricter
mAP@50-95 metric.
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Table 1: Comparison of Initial Pollen Detection Models

Model mAP@50-95 mAP@50 Recall
YOLOvV8s 0.9282 0.9875 0.9844
YOLOv11s 0.9201 0.9833 0.9784
RF-DETR-S 0.8944 0.9670 0.9380
DEIM-DFINE-S  0.8670 0.9550 0.9190
YOLOX-S 0.7770 0.9450 0.8360
RTMDet-S 0.7610 0.9230 0.8260

4.1.2  Final Model Selection. Based on the initial results, further
evaluation focused on the high-performing Ultralytics models. To
determine the optimal balance of accuracy and efficiency, nano,
small, and medium variants of YOLOv8 and YOLO11 were bench-
marked. The results, summarized in Table 2, highlight a trade-off
between model accuracy and computational cost. While YOLOv8s
emerged as the most accurate model overall (mAP@50-95 of 0.9282),
the YOLO11 family demonstrated remarkable efficiency. For in-
stance, YOLO11n achieved a comparable mAP@50-95 of 0.919 with
approximately a quarter of the parameters of YOLOvS8s and a 36%
faster inference speed.

For the purpose of honey authentication, where real-time in-
ference is not a strict requirement and processing can occur in
batches, accuracy was prioritized as the primary selection criterion.
Although the accuracy gain of YOLOv8s over YOLO11n is modest
(1%), it nonetheless represents the highest performance achieved.
Therefore, YOLOv8s was selected as the primary detection model
for the end-to-end pipeline. Figure 5 provides a qualitative assess-
ment of the selected model, comparing its predicted bounding boxes
against the ground truth labels from the test set. A quantitative
view of its classification performance on the single ‘pollen’ class
is shown in the normalized confusion matrix in Figure 6. Detailed
training graphs for this model can be found in Appendix A.

Looking ahead, the choice of detection model should be guided by
deployment constraints. For large-scale applications where through-
put or hardware cost become limiting factors, a lighter model such
as YOLO11n would offer a compelling balance of accuracy and effi-
ciency. In addition, practical deployment must account for licensing
considerations: the permissive Apache-2.0 license of the DETR mod-
els could make them preferable to the AGPL-3.0 licensed Ultralytics
models in commercial contexts, provided their performance can be
enhanced with a larger training dataset or more rigorous tuning.

4.2 Classification Performance

The classification task initially involved 76 taxa across 7 honey sam-
ples, with the dataset exhibiting substantial class imbalance. Two
architectures were investigated: a sequential fusion model with
a CoAtNet backbone pretrained on ImageNet-1k, and a parallel
fusion model combining Swin and ConvNeXt backbones pretrained
on ImageNet-1k. On this initial dataset, the parallel fusion approach
proved considerably stronger, achieving 93.5% accuracy (F1 = 0.914)
compared to 88.8% accuracy (F1 = 0.854) for the sequential model
(Table 3). Scaling the parallel fusion from Tiny to Small yielded
further improvements, though moving to Base backbones did not
provide additional benefit, suggesting diminishing returns from
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model size. Additional refinements, including a three-phase train-
ing schedule and hyperparameter optimization via RayTune, had
minimal effect, indicating that performance was primarily limited
by data quality and backbone architecture.

To address these limitations, further pollen images were col-
lected for underrepresented taxa and two taxa were consolidated
following expert advice. This expanded the dataset to 77 taxa
and reduced imbalance. Experiments on this updated dataset also
tested stronger pretraining strategies. The sequential CoAtNet, pre-
trained on ImageNet-12k and fine-tuned on ImageNet-1k, achieved
a marked improvement to 95.8% accuracy (F1 = 0.939). In contrast,
Swin and ConvNeXt models pretrained on ImageNet-22k did not
surpass their 1k-pretrained counterparts in the parallel fusion set-
ting.

A key advance came from addressing class imbalance directly.
Replacing the standard Cross Entropy with Weighted Cross Entropy
(WCE) had contrasting effects across architectures: the sequential
CoAtNet declined in performance (accuracy = 92.9%, F1 = 0.913),
whereas the parallel fusion improved substantially, reaching 96.5%
accuracy and a macro-averaged F1 of 0.960 (Table 4). This combina-
tion of parallel fusion with WCE represents the best-performing
classification model.

Generalization was further assessed by training on subsets of
the data. Restricting to three honeys (30 taxa) slightly reduced
performance (F1 = 0.932), while training on five honeys (54 taxa)
improved performance (F1 = 0.972). These results suggest that the
full 77-taxa model generalizes well, with performance stable across
subsets despite residual imbalance.

Finally, efficiency was considered. The sequential CoAtNet achieved
competitive results with only 41.7M parameters and 35.5M acti-
vations, compared to the larger parallel Swin+ConvNeXt fusion
(~100M parameters). Thus, while the parallel model remains the
most accurate and is favored in this study, the sequential CoAtNet
is a strong candidate for deployment in resource-constrained or
latency-sensitive settings.

Training curves and a confusion matrix for the best model (Par-
allel Swin+ConvNeXt Small-1k with Weighted Cross Entropy) are
provided in Appendix A.

4.3 Clustering of Unknown Pollen

Low-confidence grains, defined as those falling below a classifier
confidence threshold, were clustered to facilitate expert review. The
goal was to group visually similar but uncertain grains, enabling
efficient expert verification rather than manual inspection of indi-
vidual detections. Clustering was performed with HDBSCAN on
image embeddings, and evaluated both quantitatively and qualita-
tively.

Quantitative Evaluation. Clustering quality was assessed using
the Silhouette Score (SS) and Davies-Bouldin Index (DBI). Across all
honeys, the SS remained between 0.30-0.34, while the DBI ranged
from 1.09-1.20, values indicative of stable and reasonably well-
separated clusters. A minimum cluster size of 5 was found to prevent
fragmented clusters and improve interpretability.

Impact of Detection Threshold. The number of grains available
for clustering was influenced by both the detector and classifier
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Table 2: Comparison of Ultralytics YOLO Models

Model H;A(;_IZS@ m?(l)’@ Recall Precision Pa(l;i[gns GFLOPS NS‘Eyiaeii (f:f(;s ’I;}il:al;ge}slg)n
YOLOv8n 0.9240 0.9803 0.9635 0.9674 3.006 8.1 11.2 89.286
YOLOv8s 0.9282 0.9875 0.9844 0.9740 11.126 284 14.7 68.027
YOLOv8m 0.9136 0.9701 0.9720 0.9638 25.840 78.7 15.0 66.667
YOLO11n 0.9189 0.9847 0.9740 0.9474 2.582 6.3 10.8 92.593
YOLO11s 0.9201 0.9833 0.9784 0.9495 9.413 21.3 15.2 65.789
YOLO11m 0.9220 0.9858 0.9844 0.9631 20.031 67.6 25.3 39.526
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Figure 5: Comparison of ground truth labels and YOLOvS8s predicted bounding boxes for a sample from the test set.

Table 3: Initial experiments on the 76-taxa dataset.

Model Accuracy Macro Precision Macro Recall Macro F1
Sequential CoAtNet (1k) 0.888 0.876 0.867 0.854
Parallel Swin+ConvNeXt (Tiny-1k) 0.935 0.923 0.927 0.914
Parallel Swin+ConvNeXt (Small-1k) 0.933 0.950 0.934 0.923
Parallel Swin+ConvNeXt (Base-1k) 0.933 0.936 0.918 0.910
Parallel (Small-1k, 3-phase) 0.933 0.940 0.922 0.919
Parallel (Small-1k, RayTune) 0.939 0.947 0.930 0.924

Table 4: Final experiments on the 77-taxa dataset.

Model Accuracy Macro Precision Macro Recall Macro F1
Sequential CoAtNet (12k— 1k, CE) 0.958 0.954 0.945 0.939
Parallel Swin+ConvNeXt (Small-1k, CE) 0.932 0.929 0.912 0.906
Sequential CoAtNet (12k— 1k, WCE) 0.929 0.931 0.920 0.913
Parallel Swin+ConvNeXt (Small-1k, WCE) 0.965 0.971 0.963 0.960
Parallel Swin+ConvNeXt (Base-1k, WCE) 0.962 0.934 0.949 0.938

Parallel Swin+ConvNeXt (Small-22k— 1k, WCE) 0.956 0.963 0.946 0.941
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Figure 6: Normalized confusion matrix for the YOLOv8s
pollen detector.

thresholds. To calibrate the detector, predicted grain counts were
compared against expert counts for multiple thresholds (Table 5).
A detection threshold of D = 0.5 produced counts most consistent
with expert annotations, without introducing large numbers of
visually poor crops from low-quality detections.

Table 5: Comparison of expert and detected total grains across
detection thresholds.

HoneySample Expert D =05 D=0.6 D=0.7

HS135 261 283 276 273
HS170 318 365 344 312
HS183 345 278 267 258
HS152 441 349 326 303
HS177 359 341 333 320
HS133 372 304 282 258

Impact of Classifier Threshold. With D = 0.5 fixed, the classifier
confidence threshold (C) was varied to determine the proportion of
grains flagged as low-confidence and clustered. Higher thresholds
dramatically increased the number of grains passed to clustering, in
some cases exceeding 70% of detections. Figure 7 shows the average
proportion of low-confidence grains for each tested threshold. Since
the model was generally conservative in assigning confidence, a low
threshold (C = 0.2) was chosen, resulting in approximately 17% of
grains being clustered. This provided a balance between capturing
genuinely uncertain grains and avoiding redundant clustering of
grains already well-recognized by the model.

Qualitative Evaluation. Visual inspection of outputs (with D =
0.5 and C = 0.2) further confirmed that clusters captured coherent
groups of similar grains. A UMAP projection of embeddings (Fig-
ure 8) revealed distinct cluster structure, and exemplar images from
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Figure 7: Prevalence of low-confidence grains at different
classifier clustering thresholds.

clusters demonstrated consistent morphology within groups (Fig-
ure 9). These outputs provide an interpretable pathway for experts
to review uncertain grains efficiently.

4.4 Honey Sample Authentication

The complete pipeline combined the best-performing detection
model (YOLOvSs), classifier (Parallel Swin+ConvNeXt Small-1k
with Weighted Cross Entropy), and clustering thresholds (D=0.5,
C=0.2) as determined earlier. The pipeline was evaluated by com-
paring model-generated honey classifications to those produced
by an expert melissopalynologist. Two sets of expert annotations
were used: (i) taxa identified directly from the same pollen grain
images supplied to the model, and (ii) conventional melissopalynol-
ogy using microscopy, where the expert could view slides in three
dimensions and adjust focal depth to resolve occluded grains.

Table 6 summarizes monofloral vs. multifloral assignments across
methods. A honey was considered monofloral when any taxon
exceeded 45% of observed grains; otherwise it was classified as
multifloral. Overall, the pipeline’s honey classifications show mod-
erate alignment with expert observations. Agreement is strongest
in multifloral honeys, where the pipeline consistently matched ex-
pert assessments across all six samples. In contrast, the pipeline
struggled with monofloral assignments, correctly identifying only
one out of three. In borderline cases (e.g., HS095 and HS135), the
dominant taxon was underestimated just below the 45% thresh-
old, resulting in multifloral classifications where experts assigned
monofloral status. More broadly, the pipeline often fails to repro-
duce the expert top-3 taxa rankings, highlighting a limitation in
capturing finer-grained dominance patterns even when the correct
taxa are present in the sample.

To illustrate finer-grained differences, Figure 10 compares pipeline
and expert image observations of taxa in a representative honey
sample (HS135). While the pipeline correctly identifies PAL0019
and PAL0018 as dominant, its estimated relative abundances differ
from both expert image and manual observations. Similar charts
for all honeys in the study are provided in Appendix B.

These results demonstrate the viability of the pipeline for honey
authentication, but also highlight its current limitations. It does not
yet reproduce expert top-three rankings with high fidelity, with
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Figure 9: Exemplar images from an HDBSCAN cluster (HS150, cluster 0).

Table 6: Summary of honey classifications across methods. A honey is monofloral when any taxon exceeds 45%; otherwise
multifloral. Each cell shows the classification and the dominant (top-abundance) taxon with its proportion.

Honey Sample

Expert Image

Expert Manual

Model

HS095
HS133
HS135
HS152
HS170
HS177
HS183
HS150
HS189

Monofloral (Celtis, 60.79%)
Monofloral (Lobostemon sp. 1, 75.8%)
Monofloral (PAL0019, 46.74%)
Multifloral (Apiaceae sp. 1, 26.3%)
Multifloral (Lobostemon sp. 1, 19.8%)
Multifloral (Eucalyptus sp. 3, 26.18%)
Multifloral (Eucalyptus sp. 3, 26.08%)
Multifloral (PAL0010, 19.36%)
Multifloral (PAL0011, 24.72%)

Monofloral (Celtis, 56.40%)
Monofloral (Lobostemon sp. 1, 78.3%)
Monofloral (PAL0019, 56.3%)
Multifloral (Apiaceae sp. 1, 44.0%)
Multifloral (Vahlia sp. 1, 20.0%)
Multifloral (Eucalyptus sp. 3, 32.2%)
Multifloral (Eucalyptus sp. 3, 27.7%)
Multifloral (Brassicaceae sp. 2, 19.6%)
Multifloral (PAL0011, 29.0%)

Multifloral (Celtis, 44.9%)
Monofloral (Lobostemon sp. 1, 56.6%)
Multifloral (PAL0019, 41.0%)
Multifloral (Apiaceae sp. 1, 25.2%)
Multifloral (Monocot sp. 2, 13.4%)
Multifloral (Eucalyptus sp. 1, 10.3%)
Multifloral (Eucalyptus sp. 2, 11.5%)
Multifloral (Monocot sp. 5, 11.5%)
Multifloral (PAL0011, 25.0%)

divergences most often arising from under- or over-estimation of
secondary taxa. Additional discrepancies stem from differences in
total grain counts and poor grain crops. These issues indicate a
need for further refinement of both the classifier and detection com-
ponents. Improving these models represents the most promising

method of closing the gap to expert-level performance.

5 Conclusion

This study makes several significant contributions to the field of au-
tomated palynology, particularly within the South African context.
The research successfully established a foundational framework for
an automated honey authentication system by developing novel
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Figure 10: Comparison of expert and model observations on an unseen honey (HS135).

datasets, advanced machine learning models, and an integrated
analysis pipeline.

5.1 Key Contributions

The central contribution of this work is the development and vali-
dation of a proof-of-concept end-to-end automated honey authenti-
cation pipeline tailored to the South African context. This pipeline
integrates state-of-the-art machine learning techniques for detec-
tion, classification, and clustering of pollen grains, demonstrating
the feasibility of automated melissopalynological analysis of South
African honeys.

In building this pipeline, several technical advancements were
made. A YOLOv8s detection model was trained to localize pollen
grains with high precision, achieving a mean Average Precision
(mAP@50-95) of 0.9282. For classification, a novel hybrid CNN-
Transformer architecture was introduced, achieving 96.5% accuracy
across 77 distinct pollen taxa and showing robust scalability to
subsets with fewer classes. Additionally, the use of HDBSCAN
clustering for unknown or rare grains provided a mechanism for
expert review and iterative dataset improvement.

Complementing these modeling efforts, this study developed two
novel South African pollen datasets: one for object detection and
another for supervised classification. These datasets were critical for
training and validating the models and represent valuable resources
for future regional research.

Together, these contributions establish the first fully integrated
automated honey authentication system in South Africa, provid-
ing a proof-of-concept that demonstrates both the feasibility and
potential impact of machine learning approaches in palynology.

5.2 Limitations and Future Directions

The principal limitation of this research was the availability of
data. Insufficient image samples in both datasets, as well as class
imbalance within the final classification dataset constrained model
performance. Consequently, the most critical avenue for future

work is the expansion of the datasets, both by increasing the number
of annotated images for detection and by adding more images per
taxon to improve classification performance and mitigate class
imbalance. A focused approach, concentrating on fewer honey
types or taxa but with greater data depth, could also yield significant
accuracy improvements.

Future work should also enhance the model’s generalisation
capacity by improving the handling of poor crops. While standard
augmentations like random cropping were used, performance could
be enhanced by explicitly curating challenging examples, such as
partial grains at image boundaries, and using targeted training
strategies to force the model to learn useful features from this data.

The scope of model experimentation was also constrained by
computational resources and time. Future research would bene-
fit from exploring larger, more complex model architectures and
conducting more extensive hyperparameter optimization and data
augmentation, contingent on the availability of a larger dataset.

To enhance the practical utility and commercial viability of the
pipeline, several key developments are proposed. The implementa-
tion of a human-in-the-loop feedback mechanism is a high-priority
next step. This system would allow experts to label or correct the
classifications of grains identified by the clustering algorithm, facil-
itating continuous model retraining and improvement.

Furthermore, deploying the pipeline as a web application, sim-
ilar to platforms such as AIPollen and Honey.Al would not only
facilitate this feedback process but also provide a direct pathway to
commercialization. For such a deployment to be successful, opti-
mizing the pipeline for inference speed will be crucial. Future work
should therefore investigate the trade-offs between model accuracy
and computational speed to develop a system that is both precise
and practical for real-world application. Collectively, these future
efforts will build upon the foundational work presented herein, ad-
vancing the potential for automated palynology to support honey
authentication and biodiversity monitoring in South Africa.
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Appendix A Detailed Training Metrics
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Figure 11: Training and validation performance graphs for the YOLOv8s detection model.
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Figure 12: Phase 1 and 2 training graphs for the final parallel fusion classification model.
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Figure 13: Confusion matrix for the final parallel fusion classification model.
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Figure 14: Comparison of expert and model observations on nine unseen honey samples.
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Appendix C Pollen Reference Plates

Figure 15: A PAL0001, B PAL0012, C Euphorbiaceae sp. 1, D Brachystegia, E Campanulaceae, F Acacia sp. 1, G Proteaceae sp. 2,
H Monocot sp. 3, I PAL0002, J Daisy sp. 7, K Daisy sp. 2, L Cichorioideae, M Daisy sp. 3, N Daisy sp. 4, O Daisy sp. 5, P Daisy sp. 6,
Q Monocot sp. 1, R Lamiaceae sp. 1, S PAL0009, T PAL0021, U PAL0015, V Thymelaeaceae, W Euphorbiaceae sp. 2, X PAL0006, Y
PAL0003, Z PAL0022, AA Aulax, AB Proteaceae sp. 3, AC Proteaceae sp. 1, AD Erythrina, AE PAL0026.
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Figure 16: : A PAL0014, B PAL0019, C Solanaceae sp. 1, D PAL0023, E Erica sp. 1, F Poaceae, G PAL0013, H Rhamnaceae sp. 1, I
Rhamnaceae sp. 2, ] Rhamnaceae sp. 3, K PAL0020, L Eucalyptus sp. 1, M Eucalyptus sp. 2, N Lycopodium, O Carpobrotus , P
PAL0017, Q Plantago sp. 1, R Searsia sp. 1, S PAL0018, T PAL0027, U Celtis, V PAL0005, W Crassulaceae sp. 1, X Aizoaceae sp. 1,
Y Citrus sp. 1, Z Brassicaceae sp. 2, AA Brassicaceae sp. 1, AB PAL0011, AC Daisy sp. 1, AD PAL0025, AE PAL0016, AF Apiaceae
sp. 1, AG Agathosma sp. 1, AH Vicia sp. 1, Al Monocot sp. 2, AJ Vahlia-type sp. 1, AK Scrophulariaceae sp. 1, AL PAL0024, AM
Monocot sp. 5, AN PAL0004, AO Monocot sp. 4, AP PAL0010, AQ Eucalyptus sp. 3, AR Lobostemon sp. 1, AS Nemesia sp. 1, AT
Combretum sp. 1.
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