INVESTIGATING THE PERFORMANCE OF
FUZZERS ON WIREGUARD-GO

OVERVIEW BACKGROUND

Businesses, universities, and governments rely on Fuzzers can be classified into 4 different categories. These

networks to transport critical confidential data. VPNs are classifications are not mutually exclusive.

Test Case Feedback Knowledge of Application

widely used for network security as they provide Structure
confidentiality, authentication, and integrity. Dumb White-box Random

Full awareness of code Test cases are randomly Coverage-based
Does not use the information structure and execution state generated
gathered from program Attempts to test as much as

execution to update test case the code as possible

WireGuard, a modern and light-weight alternative to older generation
VPN protocols, has gained considerable popularity.

Test Case Generation Method | Program Exploration Approach

Grey-box Mutation-based

Partial awareness of code Creates test cases by
structure and execution state modifying a set of valid inputs

Smart Directed

Uses the information gathered BIACKIDOR Generation-based

Fuzzers are a popular and effective tool for discovering
oo, o - . from program execution to
vulnerabilities in software, however, there is a lack of updatetest case generaion | | | o awareness of appiation | | | Creates test cases based on
structure or execution state LioCeR0Wiab v ICIRIOIRam
systematic studies on fuzzing implementations of VPNs.

Attempts to test certain parts of
the code

input is

OBJECTIVES METHODOLOGY

e [nvestigate the feasibility of using e Two different fuzzers — Boofuzz and Peach — were used to fuzz “Wireguard-go”.
fuzzers to test Wireguard-go. e Different experiments were run to investigate the effects that predominant
Investigate how parameters, such as parameters for each fuzzer had on its performance by recording the number
persistent connections, mutation of iterations executed in a given time period.
strategies, and numbers of fields The parameters investigated were: Mutation strategy, maximum fields to
impact the efficiency and mutate at a time, the number of fields to mutate at a time, switch count, and
performance of Boofuzz and Peach. persistent vs non-persistent execution of the target program (Wireguard-go).

KEY FINDINGS

Wireguard-go displayed a base-level of robustness against common mistakes and attacks, such as malformed packets.

All Mutation Strategies, with Both Sleep Times, and While the number of fields fuzzed, Different Number of Fields (from 1-6) Fuzzed at One

Different Time Thresholds Time
performance impact was minimal.
Therefore, the impact of these II I I I I I
II II IIII IIII porometers on performonce IS NOt
Bit flip Boundary values Random bytes Bad patterns 5 6

. 1 2 3 4
Mutation Type sufficient to dictate decision-making Number of Fields Fuzzed
m No Sleep - <3 hours m0,5s Sleep - <3 hours mNo Sleep - In40 min m0,5s Sleep -In 1 hour When des'gnlng teStS mIinupto3hours mIn1hour

the maximum fields mutated per
iteration, and the mutation strategies
used did influence performance, the

o

Number of Test Cases Completed
o

Number of Test Cases Completed

Ilterations Executed vs Switch Count SWitCh count had lterations Executed with Restart on Each Iteration
1000000 no effect on vs Persistent Run The most notable

900000

so0on performance. The finding was that
can000 variation between " | restarting the
0000 test cases was process on each
200000 within the range of ... _ iteration incurs

o . haturally occuring significant overhead.

S S
<oQ A2 S <oQ S . 4
N 9P g variation 0 100000 200000 300000 400000 500000 600000 700000

Switch Count Iterations Executed

Iterations Executed in 3 Hours

Q Q Q O Q
\s) ,& Q <OQ QQ <0Q Q QQQ

Q Q
N 12 A

P

CONCLUSIONS

e |Increasing the number of fields simultaneously mutated reduces performance, introducing a trade-off between test case
coverage and overall performance.
Restarting the process on each iteration should be avoided wherever possible, as it adds significant overhead.
While Peach is an effective tool, it has not been maintained. Therefore, newer fuzzers that are compatible with updated
software tools should be considered first, as they are better documented and would be less challenging to set up.
Boofuzz is a generation-based fuzzer, which can be difficult to use. However, it provides better coverage, is well-
documented, and is well suited for network protocol fuzzing.

Michal Sacks — sckmicOO6@myuct.ac.za Supervised by: Prof. Josiah Chavula (UCT) [IF ‘ SC H O O I_ OF] —I-
Thalia Hawthorn — hwtthaOOl@myuct.ac.za Marco Slaviero (Thinkst Canary)

