INVESTIGATING THE PERFORMANCE OF
FUZZERS ON WIREGUARD-GO

OVERVIEW BACKGROUND

Businesses, universities, and governments rely on Fuzzers can be classified into 4 different categories. These

networks to transport critical confidential data. VPNs are classifications are not mutually exclusive.
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WireGuard, a modern and light-weight alternative to older generation
VPN protocols, has gained considerable popularity.
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OBJECTIVES METHODOLOGY

e [nvestigate the feasibility of using e Two different fuzzers — Boofuzz and Peach — were used to fuzz “Wireguard-go”.
fuzzers to test Wireguard-go. e Different experiments were run to investigate the effects that predominant
Investigate how parameters, such as parameters for each fuzzer had on its performance by recording the number
persistent connections, mutation of iterations executed in a given time period.
strategies, and numbers of fields The parameters investigated were: Mutation strategy, maximum fields to
impact the efficiency and mutate at a time, the number of fields to mutate at a time, switch count, and
performance of Boofuzz and Peach. persistent vs non-persistent execution of the target program (Wireguard-go).

KEY FINDINGS

Wireguard-go displayed a base-level of robustness against common mistakes and attacks, such as malformed packets.
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CONCLUSIONS

e |Increasing the number of fields simultaneously mutated reduces performance, introducing a trade-off between test case
coverage and overall performance.
Restarting the process on each iteration should be avoided wherever possible, as it adds significant overhead.
While Peach is an effective tool, it has not been maintained. Therefore, newer fuzzers that are compatible with updated
software tools should be considered first, as they are better documented and would be less challenging to set up.
Boofuzz is a generation-based fuzzer, which can be difficult to use. However, it provides better coverage, is well-
documented, and is well suited for network protocol fuzzing.
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