

BABYLMS

FOR SAMPLE-EFFICIENT LANGUAGE MODELLING OF ANCIENT GREEK

INTRODUCTION

- Ancient Greek, despite its cultural and historical significance to Western society, has limited publicly available datasets.
- The BabyLM Challenge is a shared task for developing sample-efficient architectures, such as ELC-BERT and GPT-BERT.
- We train these BabyLMs and a baseline BERT model on limited Ancient Greek data.
- The models' performance is compared across three downstream Natural Language Understanding (NLU) tasks.
- We compare our results with previous Ancient Greek language models trained on significantly more data, which we cast as 'skylines'.

MODELS

BERT

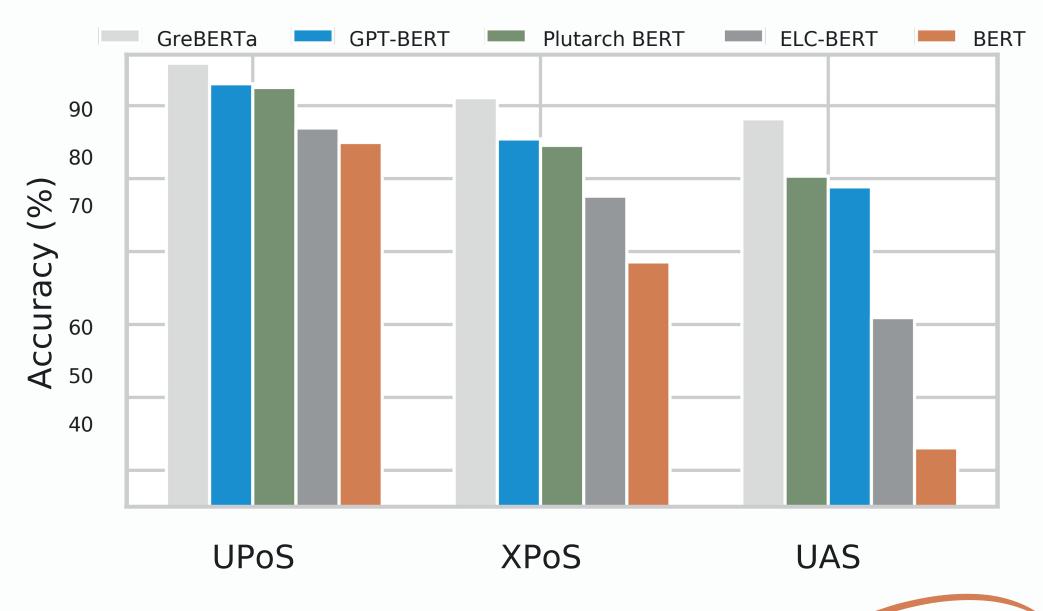
A Transformer-based language model trained using Masked Language Modelling (MLM), which captures bidirectional context.

2 ELC-BERT

A BabyLM that employs a layer-weighting mechanism that assigns learnable weights to each layer's output.

3 GPT-BERT

A hybrid BabyLM that combines the MLM training objective (from BERT) and the Causal Language Modelling objective (from GPT).


OBJECTIVES

- I. Investigate the impact of including diacritics in the pretraining of an Ancient Greek language model.
- 2. Ablate the modifications to ELC-BERT to determine which lead to improved downstream performance.
- 3. Determine the optimal causal-to-masked ratio for pretraining an Ancient Greek GPT-BERT.
- 4. Investigate the suitability of sample-efficient BabyLM architectures for the low-resource context of Ancient Greek.

METHODOLOGY

- Curate and preprocess a collection of digitized Ancient Greek texts.
- Split the processed corpus into training, validation, and test sets.
- Train a custom Ancient Greek tokenizer.
- Pretrain our models on the training split of the curated Ancient Greek corpus (~25M words).
- Finetune our models for each task using the Universal Dependencies Ancient Greek Perseus treebank.

Downstream Performance Across All NLU Tasks

RESULTS

- GPT-BERT significantly outperforms both ELC-BERT and BERT across all downstream NLU tasks.
- The improved sample efficiency of GPT-BERT leads to greater performance gains on more difficult tasks.
- GPT-BERT marginally outperforms a skyline model, Plutarch BERT, on UPoS and XPoS tagging.
- Another skyline model, GreBERTa, substantially outperforms GPT-BERT across all NLU tasks..

CONCLUSIONS

- GPT-BERT is more sample efficient than ELC-BERT and BERT when trained on the same limited Ancient Greek corpus.
- Although GPT-BERT outperforms one of the skyline models on PoS tagging, it is outperformed by the other skyline models across all downstream tasks.
- Future research in Ancient Greek language modelling should pursue larger, high-quality datasets as well as more sample-efficient architectures.

University of Cape Town
Department of Computer Science
TEL: +27 (0)21 650 2663
Website: https://sit.uct.ac.za/

Authors

Stylianos Dalakas

dlksty001@myuct.ac.za

Supervisor
Francois Meyer
francois.meyer@uct.ac.za

