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We use Large Language Models to translate natural language into Answer Set
Programs, testing fine-tuning, prompting, and solver feedback to overcome
the knowledge acquisition bottleneck.
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Problem statement and motivation

Writing ASP by hand is slow, expert-dependent, and creates a Knowledge Acquisition
Bottleneck, with no effective tools for generating ASP from natural language and
only limited prior attempts.

We evaluate 3 LLM approaches in solving the Knowledge Acquisition

Bottleneck.
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Impact and Future Work and Conclusion

LLMs can ease the knowledge bottleneck i1n ASP, making it
more accessible and accurate. Future work will expand
datasets, improve generalisation, and refine pipelines for
real-world use.
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