Towards Robust Malware Classification

Overview

- Malicious programs continually evolve over time.
- This causes **challenges** such as **data collection** and **concept drift**.
- We require models to understand when drift has occurred, to adapt to drift, and to make effective use of collected malware samples.

Objectives

- 1) Adaptive Malware Classification
 2) Robust Data Augmentation
- 3) Concept Drift Explainability

Adaptive Topology Methods

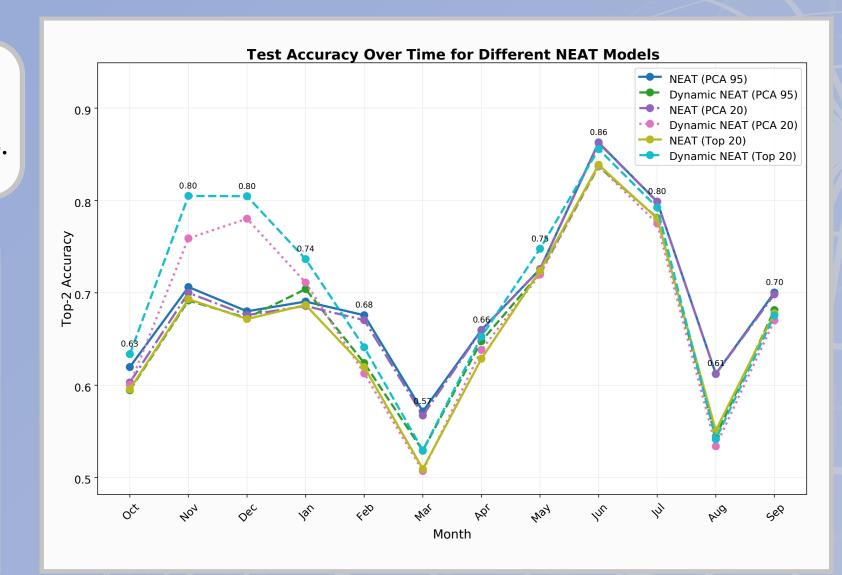
Method & Results

- We trained **NEAT** model variants for **malware classification**.
- **DynNEAT** achieved highest **adaptive** topology method accuracy of **65.78%**.

Conclusion

- Fixed topology outperforms adaptive topology methods.
- **Dimensionality** impacts learning with NEAT models.

Research	Accuracy	Type	Number of classes	Temporal analysis
Lu et al. [16]	96.96%	Multi	11	No
Lu et al. [16]	93.42%	Multi	49	No
Louk	99.97%	Binary	-	No
& Tama				
[15]				
Guldemir	89.55%	Multi	20	Yes
et. al [8]				
Our work	65.78%	Multi	20	Yes



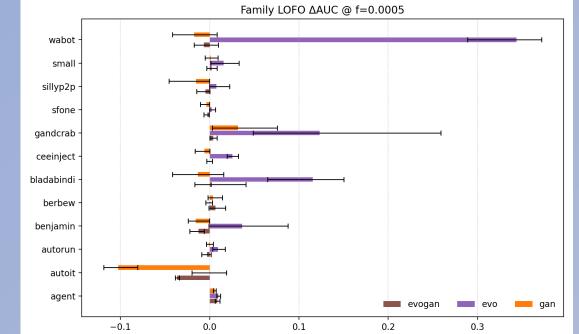
Methods

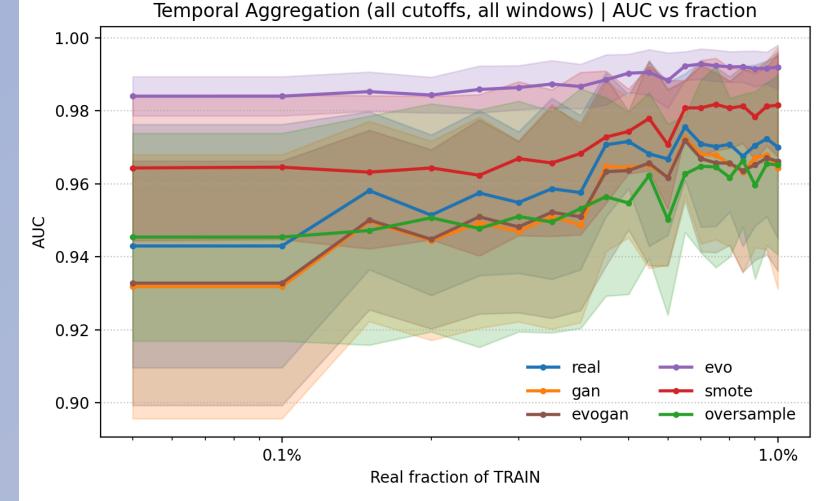
Synthetic Data Augmentation

- Synthesising malware positives with **WGAN-GP**, **EVO**, and **EvoGAN** to augment scarce training data and boost detection
- Evaluating i.i.d., temporal, and family regimes using Random Forest

Conclusion

- **EVO outperforms** all baselines and other augmentation methods on **ROC-AUC** across regimes, with the lowest seed variability.
- Gains are largest under scarcity and taper as real data approaches ~1%.





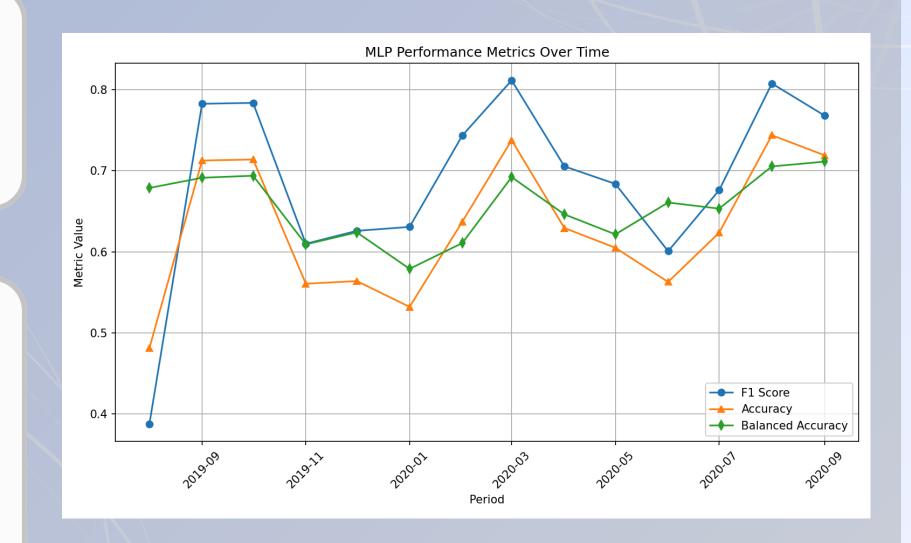
Methods

Concept Drift Monitoring

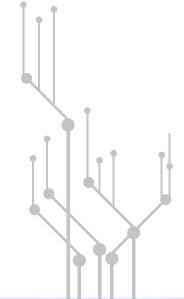
- Training DL models on **historical** malware and **temporally** testing on newer malware to quantify the effects of concept drift.
- Evaluating drift detection performance and providing **insights** on drift through **Explainable AI**.

Conclusion

- The MLP model showed significant performance **degradation**; unexpectedly due to benign samples.
- Ensemble drift detection is best suited to balance **reliability** and **responsiveness.**
- Explainability reports gave insight on feature **distribution shifts** driving concept drift.



University of Cape Town
Department of Computer Science
www.sit.uct.ac.za



Shaylin Velen <VLNSHA004@myuct.ac.za>
Callum Musselwhite <MSSCAL002@myuct.ac.za>
Simphile Mkhize <MKHSIM067@myuct.ac.za>
Supervised by Geoff Nitschke <geoff.nitschke@uct.ac.za>