Towards Robust Malware Classification

Overview
e Malicious programs continually evolve over time. Objectives

e This causes challenges such as data collection and
concept drift.

e We require models to understand when drift has
occurred, to adapt to drift, and to make effective use
of collected malware samples.

1) Adaptive Malware Classification
2) Robust Data Augmentation

3) Concept Drift Explainability
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Concept Drift Monitoring

e Training DL models on historical malware and temporally testing on
newer malware to quantify the effects of concept drift.
e Evaluating drift detection performance and providing insights on drift
through Explainable Al.

Conclusion

e The MLP model showed significant performance degradation;
unexpectedly due to benign samples.

« Ensemble drift detection is best suited to balance reliability and sy
responsiveness. - > > - p

o Explainability reports gave insight on feature distribution shifts driving ¥ v ¥
concept drift.

MLP Performance Metrics Over Time
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