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Abstract

In the 1950s, McCarthy proposed using formal logic in AI, establishing the foundations of knowledge
representation and reasoning. Early systems, based on monotonic logic, struggled with exceptions since
inferences could not be revised once drawn. To address this, researchers developed non-monotonic
reasoning, enabling defeasible “common sense” inference. The Kraus–Lehmann–Magidor (KLM)
framework emerged as a leading approach, with both syntactic and semantic formulations. Our work
focuses on syntactic entailment algorithms—Rational Closure, Lexicographic Closure, and Relevant
Closure—and develops justification methods to enhance interpretability. A web-based reasoning tool
integrates computation, visualisation, and evaluation, advancing explainability and efficiency in symbolic
reasoning.

1. Introduction and Background

Propositional Logic formalises reasoning by combining simple statements with defined operators, where
truth depends only on base statements and operator use. It underpins formal reasoning by enabling analysis
independent of natural language.

Valuation
A valuation v is a function that maps each atom in P to either true (T ) or false (F ).

Satisfiability
A valuation v satisfies an atom p ∈ P ⇐⇒ v(p) = T , denoted by v ⊩ p.

Knowledge Base
A knowledge base, K ⊂ L, is a set of propositional formulas and is considered finite in this
work.

Classical Entailment
Given a knowledge baseK and a formulaα, it is the case thatα is entailed byK, writtenK |= α
and read as “K entails α”, ⇐⇒ for every v ∈ V such that v ⊩ K it is the case that v ⊩ α.

Propositional logic diverges from human reasoning: it cannot represent typicality with exceptions and, due
to its monotonicity, prevents retracting conclusions when new, conflicting information arises.

2. Defeasible Reasoning and Explanation

To address the monotonicity limitation, the KLM framework formalises non-monotonic reasoning about
typicality through a preferential consequence relation, supporting conclusions like “an A is typically a B”.
Based on KLM postulates, relations satisfying postulates 1–7 are preferential, and those also meeting the
8th are rational. Interpreted via preferential or ranked semantics, valuations are ordered by “typicality”,
and a defeasible implication α |∼ β holds when all preferred worlds satisfying α also satisfy β.

KLM Postulates
1. Reflexivity: α → α

3. Right Weakening:
α → β, γ |∼ α

γ |∼ β

5. Or:
α |∼ β, γ |∼ β

α ∨ γ |∼ β

7. Cautious Monotonicity:
α |∼ γ, α |∼ β

α ∧ β |∼ γ

2. Left Logical Equivalence:
α ≡ β, α |∼ γ

β |∼ γ

4. And:
α |∼ β, α |∼ γ

α |∼ β ∧ γ

6. Cut:
α ∧ γ |∼ β, α |∼ γ

α |∼ β

8. Rational Monotonicity:
α |∼ β, α ̸|∼ ¬γ

α ∧ γ |∼ β

Exceptionality
Given a knowledge base K, a propositional formula α ∈ L is considered exceptional for K if
and only if K |≈P ⊤ |∼ ¬α.

Minimal Ranked Entailment
Given a defeasible knowledge base K, the minimal ranked interpretation satisfying K, RK

RC ,
defines an entailment relation |≈, known as the minimal ranked entailment, such that for any
defeasible implication α |∼ β, K |≈ α |∼ β if and only if RK

RC ⊩ α |∼ β.

Justification of Entailments
Given a knowledge base K and some classical propositional formula α → β such that K |=
α → β. Then the setJ is said to be a justification forα → β inK ifJ ⊆ K,J |= α → β and for
every J ′ ⊂ J ,J ′ ̸|= α → β. The set J will sometimes be denoted as J K

(α→β) or J (α → β,K).

2.1. Base Rank

The exceptionality sequence is an iterative sequence of knowledge bases, EK0 , EK1 ...EKn where EK0 = K
and EKi+1 = ε(EKi ) for 1 ≤ i ≤ n. Since K is finite, some n must always exist, and with the sequence
EK0 , EK1 , . . . , EK∞ defined, we can then formally define the base rank of a formula.

Base Rank
With respect to a given defeasible knowledge base K, brK(α), known as the base rank of a
formula α ∈ L, is the smallest index r such that α is not exceptional in EKr , and is defined:
brK(α) := min{r | EKr ̸|≈R ⊤ |∼ ¬α}.

Given the following knowledge base and the query pets |∼ legs:

K =
{
animals |∼ legs, animals |∼ wild, pets → animals, pets |∼ ¬wild

}
R∞ pets → animals
R1 pets |∼ ¬wild
R0 animals |∼ legs, animals |∼ wild

2.2. Rational Closure

Rational closure applies prototypical reasoning, where typical instances inherit default properties, but
atypical cases, such as pets are animals, do not.

Rational Closure
Given a knowledge base K, a defeasible implication α |∼ β is said to be in the rational closure
of K (written K |≈RC α |∼ β), if and only if brK(α) < brK(α ∧ ¬β) or brK(α) = ∞.

• Discarded ranks: R0 = {animals |∼ legs, animals |∼ wild}

• Entailment: K ̸|≈RC pets |∼ legs

2.3. Lexicographic Closure

Lexicographic closure, a more adventurous form of defeasible entailment, permits atypical cases like
platypuses to inherit most typical mammalian properties, unlike rational closure.

Lexicographic Closure
Given a knowledge base K, and a defeasible implication α |∼ β, it is the case that α |∼ β is in
the Lexicographic Closure of K, denoted K |≈LC α |∼ β, if and only if for any basis KB ⊆ K of
α,

−→
KB ∪ {α} |= β.

• Discarded statements: {animals |∼ wild}

• Entailment: K |≈LC pets |∼ legs

• Deciding: D = {pets→ animals, pets |∼ ¬wild, animals |∼ legs}

• Justifications: J1 = {pets → animals, animals |∼ legs}

2.4. Relevant Closure

To define how to compute the relevant partition <R,R− > for a query α |∼ β: the antecedent α determines
the relevant partition. Based on the reasoning behind Relevant Closure, R should include exactly those
statements used to derive ¬α.

Basic Relevant Closure
For a statement α and knowledge base K, let JK

bas(α) = {J | J is an ε-justification w.r.t. K}.
Then α |∼ β is said to be in the Basic Relevant Closure of K if it is in the Relevant Closure of K
w.r.t.

⋃
Jbas ⊆ K.

Minimal Relevant Closure
For some set of justifications J ⊆ K, let JK

min = {α |∼ β | rK(α) ≤ rK(γ) for every
γ |∼ σ ∈ J . For a statement α, let JK

min(α) =
⋃
J∈J KαJK

min(α). Then α |∼ β is said to be in
the Minimal Relevant Closure of K if it is in the Relevant Closure of K w.r.t.

⋃
JK
min(α).

• Relevance: Rbas = {animals |∼ wild, pets |∼ ¬wild}, Rmin = {animals |∼ wild}

• Discarded statements: {animals |∼ wild}

• Entailment: K |≈LC pets |∼ legs

• Deciding: D = {pets → animals, pets |∼ ¬wild, animals |∼ legs}

• Justifications: J1 = {pets → animals, animals |∼ legs}

3. Implementation of Algorithms

The klm-algorithms system employs a modular, layered architecture that promotes clarity, scalability, and
maintainability. It features a web-based interface linked to a backend responsible for logical processing and
algorithm execution, integrating external libraries to enhance reasoning and explanation capabilities.

By maintaining a clear separation between the interface, controllers, and domain logic, the system
efficiently processes user input, executes defeasible reasoning algorithms, and generates coherent
explanatory feedback.

klm-algorithms is available at: https://klm-algorithms.fly.dev

An example of the implemented algorithms is DefeasibleJustification, which computes minimal
justification sets for a given entailment deciding knowledge base D for a defeasible query α |∼ β:
Algorithm .1: UniversalDefeasibleJustification
Input: A defeasible knowledge base K and a defeasible query α |∼ β
Output: The set of all justification sets {J1,J2,J3, . . . }

1 (holds,D) := KLMDefeasibleEntailment(K, α |∼ β);
2 if holds = false then
3 return ∅;
4 end
5 return ComputeAllJustifications(D, α |∼ β);

4. Evaluation of Algorithms

This study evaluates the logical soundness and computational feasibility of the algorithms to clarify their
role in defeasible reasoning, particularly amid their growing relevance in artificial intelligence. The analysis
focuses on key performance metrics such as efficiency and entailment accuracy, which determine practical
applicability.

We evaluate algorithm performance on knowledge bases that vary in statement count, rank depth, and
distribution pattern. While comparative studies indicate that these algorithms often mirror intuitive
reasoning, they continue to face scalability challenges in large knowledge bases, underscoring the need
for future work on interpretable and scalable solutions.


