
Defeasible Reasoning for Datalog
Integrating rules with exceptions into Datalog ontologies.

What is Datalog?

Datalog is an expressive database query language.

Unlike many other paradigmatic database languages,

such as Sql, Datalog is based on the logic programming
paradigm, meaning that its programs are represented as

sets of formulas in a formal mathematical logic:

human(X ) → mortal(X ).
human(Socrates).
mortal(Socrates)?

Datalog as an Ontology Language

Over the last decade, extensions of Datalog have been

used as ontology languages, i.e. as a means of expressing

the relationships between concepts and objects in an

application domain. For instance, a partial ontology for

human families can be expressed as follows:

human(X ) → ∃Ymother(X , Y ).
mother(X , Y ) → human(Y ).

mother(X , Y ),mother(X , Y ′) → Y = Y ′.

Modalities in Rules

Some ontologies contain rules involving modalities,

such as time (“children eventually become adults”) or

certainty (“if there’s sun then it probably isn’t raining”).
We reason with modality all the time in our everyday

lives.

In this project we are interested in the modality of

defeasible rules, which express things that are normally

true, but sometimes false in exceptional circumstances.

For instance, birds are normally able to fly, but some

birds such as penguins have lost the ability to do so. In

our extension of Datalog, this rule would be written like

so:

bird(X ) { fly(X ).

The Klm Framework

The Klm framework is a mathematical theory of

defeasibility for propositional logic. It provides a precise

description of what it means for a defeasible rule to be

true, as well as how one can reason about defeasible

rules.

The Klm interpretation of defeasible rules is based on a

number of simple mathematical axioms known as the

rationality postulates:

(Or) A { C, B { C =⇒ A ∨ B { C
(And) A { B,A { C =⇒ A { B ∧ C

. . .

Defeasible Datalog

The goal of this project is to integrate the Klm

framework with expressive versions of Datalog, in order

to reason about ontologies containing defeasible rules.

For instance, consider the following ontology:

penguin(X ) → bird(X ).
bird(X ) { fly(X ) .

penguin(X ) { ¬fly(X ).

This states that penguins are birds, that birds normally

fly and that penguins normally don’t. Our Datalog

extension is able to correctly infer from this ontology

that birds normally aren’t penguins:

bird(X ) { ¬penguin(X ).

A Prototype Implementation

A prototype implementation of our Datalog extension is

available here:

https://github.com/Bubblyworld/drfol-reasoner.

It is written in Haskell, and uses Microsoft’s Z3 solver to

perform first-order satisfaction checks internally.

Guy Paterson-Jones 1 Tommie Meyer 2 Giovanni Casini 3
1guy.paterson.jones@gmail.com, 2tmeyer@cs.uct.ac.za, 3giovanni.casini@isti.cnr.it

https://github.com/Bubblyworld/drfol-reasoner
mailto:guy.paterson.jones@gmail.com
mailto:tmeyer@cs.uct.ac.za
mailto:giovanni.casini@isti.cnr.it

