Interactive Question Answering

A Sequence Modelling Approach to Question-Answering in Text-Based Games

Gregory Furman
FRMGREOO1 @myuct.ac.za
UCT Computer Science Honours

Abstract

Interactive Question Answering (IQA) has been proposed to solve
current systems failing to develop comprehension abilities. To this
end, the Question Answering using Interactive Text (QAit) task was
created to produce and benchmark interactive agents seeking infor-
mation and answering questions in a procedural knowledge setting.
While prior work has exclusively focused on IQA as a reinforcement
learning problem, such methods suffer from low sample efficiency
and poor accuracy on zero-shot evaluation. In this paper, we propose
framing an IQA trajectory as a sequence modelling problem. Us-
ing the novel Decision Transformer architecture, we investigate the
applicability of a Transformer architecture in modelling IQA prob-
lems at scale. By utilising a causally masked GPT-2 Transformer
for action generation and a BERT model for answer prediction, we
show the Decision Transformer achieves performance greater than
or equal to current state-of-the-art RL baselines on the QAit task in
a more sample efficient manner.

1 INTRODUCTION

Recent work has shown that question-answering (QA) and machine
reading comprehension (MRC) systems fail to develop the necessary
comprehension abilities required to fulfil a question-answering task
[21, 26, 27]. Traditional methods for QA and MRC are primarily
concerned with the retrieval of declarative knowledge, that is, explic-
itly stated or static descriptions of entities within a knowledge base
(KB) [26]. In addition, these models tend to cultivate basic pattern
matching skills, further differentiating their abilities from those of
humans [26]. Conversely, procedural knowledge is the sequence of
actions required to perform a task [9]. To this end, researchers pro-
pose interactive question-answering (IQA) as a means of teaching
MRC systems to gather information necessary for question answer-
ing [26].

IQA requires an agent to interact with some dynamic environment
in order to gather the knowledge necessary to answer a question [10].
Given the interactiveness, such a task is primarily suited towards
a reinforcement learning (RL) based solution. Yuan et al. [26] pro-
posed Question Answering using Interactive Text (QAit) as a means
of testing the knowledge gathering capabilities of an agent required
to answer a question about the environment with which it inhab-
its. Here an agent interacts with a partially observable text-based
environment, created using Microsoft TextWorld [7], in order to
gather information and answer questions about the attributes, lo-
cation, and existence of objects. The QA.it task aims to produce
interactive agents seeking information and answering questions in a
procedural knowledge setting.

The results achieved by Yuan et al. suffered from low-sample
efficiency and relatively poor performance on existence and attribute
question types. These shortcomings necessitate investigation into
current architecture and methodology used by QAit and motivates

the exploration of alternatives. To this end, we hypothesise that
a transformer architecture that treats a reinforcement learning tra-
jectory as a sequence of states, actions, and rewards would yield
significant improvements over the current QAit baseline.

Transformers [23] have shown success in modelling a diverse
range of high-dimensional problems at scale [4, 8, 20]. The ability
to employ transfer-learning and fine-tuning also means that existing
models such as Bidirectional Encoder Representations from Trans-
formers (BERT) and Generative Pre-Trained (GPT) [19] models
can be utilised and trained in a stable manner. Hence, the aforemen-
tioned benefits coupled with a demonstrated ability for transformers
to model long sequences by utilising the self-attention mechanism
makes this architecture ideal for tasks of IQA. Recent works by
Chen et al. [5] & Janner et al. [13] have shown the applicability
of such models to sequential decision-making problems offering
an alternative solution to RL based problems. The authors propose
framing a given RL trajectory as a sequence of states, actions, and
rewards modelled autoregressively by a Transformer. This sequence
modelling transformer for RL based problems will be referred to as
a Decision Transformer (DT) [5].

In this paper, we propose replacing the original QA module with a
fine-tuned BERT model, aiming to leverage pre-trained word embed-
dings and language understanding to provide more accurate answers
to questions. We will replace the role of the RL agent with a Deci-
sion Transformer that utilises the GPT-2 [19] architecture and will
closely follow the methodology outlined by Chen et al. [5]. In this
paper, we investigate two hypotheses:

(1) By framing the QA.it task as a sequence modelling problem, a
Decision Transformer will outperform previous benchmarks
set out by Yuan et al. with respect to the gathering of pro-
cedural information required to answer a question, referred
to as sufficient information. The Decision Transformer will
benefit from increased sample efficiency and speed of training
over previous RL methods tested. Moreover, despite using
sub-optimal data generated via random rollouts, previous
benchmarks will be matched and outperformed. As QAit is
considered sparsely-rewarded [26], particularly attribute type
questions, we posit that the Decision Transformer’s reward-
agnostic abilities will lead to improved performance [5].
Replacing the current QA module with a BERT model fine-
tuned to the QA.it task will improve question answering capa-
bilities over prior methods. This paper posits that leveraging
the BERT model’s bidirectionality and pre-trained language
embeddings can improve sample efficiency and QA accuracy.

2

~

enter wooden shed

"garden”

P

t1 t—l

Ht

P

®.
|

5

t-1
f t-1

linear decoder

®.
|

t t
/)E\
ft

GPT-2 causal transformer

3 3 3 [I [
con_c‘_at. | I [] []
gﬁzﬂ:&?ﬁ;l | input embedding
GRU GRU t t t
T T T T T T T T E) 1 enter wooden
| Embed Returns | l Embed Words l I Embed Words] '
*

o e .

Figure 1: Decision Transformer architecture. States, Actions, and Returns are each fed as input into modality specific linear layers
with a positional episodic timestep encoding being added. Tokens are fed into a GPT-2 architecture allowing for the autoregressive
prediction of actions, called commands, using a causal self-attention mask. Action predictions are then fed into three linear-decoders
each representing the action, modifier, and object of a command. States and actions are projected to the embedding dimension and
encoded by a GRU. An embedding is also learnt for returns-to-go. All three tokens are then concatenated with a positional embedding
for the episodic timestep ¢. The output of the GPT Decision Transformer is fed into linear decoders for the prediction of a command’s
action, modifier, and object components as well as a decoder for predicting the answer to the question. Diagram & description adapted

from Chen et al. [5].

2 BACKGROUND
2.1 Text-based Environments

Dynamic environments can be created using a text-based world
generating framework that RL agents can interact with to achieve
some goal - commonly rooted in information extraction or question
answering. The underlying environment with which the agent inhab-
its can be some abstraction of a real-world KB wherein different
in-game objects or locations can be decoded as representing some
real-world entity-relation pairs. Agents are expected to learn optimal
policies within this textual space. These policies represent some
abstraction of "skills" required to perform a sequence of actions to
maximise a reward. Such skills include certain forms of reasoning,
comprehension, memory, as well as contextual-awareness of their
environment [18]. One of the most popular framework for text-based
games is TextWorld [7, 18]. TextWorld is an open-source simulator
developed by Microsoft that aims to train RL agents to acquire skills
such as decision making and language comprehension] . With the
popularity of text-based games, many of the barriers to entry for ap-
proaching RL problems in NLP have been lifted - which some posit

lhttps://www.microsofmom/en—us/research/project/lexlworld/ (Accessed June 3 2021)

will have a significant impact on language learning in dialogue-like
environments [14, 18].

2.2 QAit Task

Using TextWorld, Yuan et al. developed Question Answering with
Interactive Text (QAit) [26]. The QAit task measures an agent’s
procedural and declarative knowledge-gathering abilities required
to answer a question about an interactive text-based environment.
Developed atop Microsoft TextWorld [7], QAit expects an agent to
answer questions requiring an understanding of locality, existence,
and attributes of objects within an environment. Such environments
are procedurally generated via sampling from a distribution of world
settings.

2.2.1 TextWorld Environment An agent interacts with a TextWorld
environment using textual commands that consist of an action, modi-
fier, and object triplet e.g "open conventional oven". An environment
consists of a fixed number of rooms, each containing randomly as-
signed objects and location names. Navigating rooms and interacting
with objects is done purely using text-based commands. Upon an
agent giving a command, TextWorld will respond with a state-string

showing the consequence of that action. State strings contain infor-
mation about the room an agent is in and the objects that are currently
present. Environments are of two map types: fixed map and random
map. A fixed map contains six rooms, whereas random maps have
their number of rooms sampled from a uniform distribution U (2, 12).

2.2.2 Question types An agent is required to answer one of three
question types: location, attribute, and existence. All questions relate
to object characteristics.

o Location questions assess an agent’s ability to understand
the location of objects within the environment. Here, an agent
navigates the world trying to find a desired object and answer
which container it is in. For example, "Where is copper key?"
could be answered with "garden" or "toolbox".

o Existence questions relate to the existence of objects within
the environment. Here, an agent moves about and interacts
with entities in the world to gather knowledge and determine
whether an object exists. Answers are either yes ("1") or no
("0"), with questions being phrased as "is there any X in the
world?", where X is an entity in the vocabulary.

o Attribute questions are the most difficult to answer as they
require high interactivity and movement throughout the world.
Similarly to existence, attribute type answers are either yes
or no. These question types necessitate an agent to compre-
hend both a question and the environment. Thus, these are
answered with the lowest accuracy of all three types. More-
over, entities in question often have arbitrary names and at-
tributes, making memorisation impossible. For example, "Is
stove hot?" requires an agent to find and interact with "stove"
to answer the question correctly.

2.2.3 Games Yuan et al.’s methodology for evaluating agent per-
formance sees average QA training accuracy calculated over five
training sets. These are fixed and random map types having Number
of Games settings of 1, 2, 10, 100, 500, and unlimited, respectively.
Unlimited games see worlds generated on the fly during training.
The number of games indicates the number of unique environments
that an agent will interact with during training.

2.2.4 Rewards & metrics In order to aid agent learning, Yuan et al.
proposed two rewards to be used in QAit environments to help the
learning process:

¢ Sufficient Information Reward measures how much infor-
mation an agent has gathered that is required to answer the
question. This value is awarded at the end of an episode and
not given at each timestep.

o Exploration Reward is awarded to an agent whenever enter-
ing a previously unseen state in order to promote exploration
of the environment. Interchangeably referred to as exploration
bonus.

2.3 Evaluation

An agent’s accuracy will be measured using zero-shot evaluation
where five hundred never-before-seen games are held out during
training, each containing a single question. Yuan et al. proposed
this as a means of assessing a model’s generalisation abilities in a
manner akin to the test set of supervised learning problems.

The QAit task measures an agent’s performance by sufficient
information and QA accuracy. The former quantifies the amount of
procedural knowledge required to answer a question that an agent
has gained. The latter indicates the percentage of correct answers
to questions about the environment. The heuristics for sufficient
information calculation can be seen in the original QAit paper as
well as Table 8.

2.4 Sequence modelling

2.4.1 RNN Recurrent neural networks (RNNs), such as long short-
term memory (LSTM) [12] or Gated Recurrent Unit (GRU) models
[6], are commonly associated with sequence modelling problems
and, until recently, such models were considered state-of-the-art
[22]. However, such models have several major shortcomings. Due
to the vanishing gradient problem [17], as a sentence increases in
length, the likelihood of maintaining context decreases exponentially.
Although LSTMs and GRUs can retain some memory to mitigate
this, through the usage of gated units, long-term dependencies are
still forgotten [22]. Moreover, as each hidden state h; is a function
of the previous hidden state h;—; and the input position ¢, increasing
performance through parallelisation is functionally impossible [23].

2.4.2 Transformers Vaswani et. al. [23] proposed Transformers
as an efficient architecture to model sequential data. These models
outperformed the training costs and model accuracy of convolutional
and RNN approaches to common language modelling and translation
problems [23]. The authors show that an attention mechanism can
entirely replace recurrence and convolutions resulting in an architec-
ture consisting entirely of stacked self-attention layers with residual
connections. Transformers can model global dependencies and of-
fer significant speedup capabilities via parallelism by eschewing
recurrence and relying solely on an attention mechanism.

2.4.3 Attention mechanism A Transformer’s self-attention mech-
anism, described by Chen et. al. [5], sees each self-attention layer
be fed n embeddings {x;}}, with each embedding being directly
related to some input tokens. The ith token is mapped via a linear
transformation to a key k;, query g;, and value v;. As output, each
layer returns n embeddings {z;}!_, where input dimensionality has
been preserved. Output i of the self-attention layer is calculated by
weighting values v; by the normalised dot product between query g;
and key k;:

zi=) softmax({(qi kj)}oy)) - 0)

J=1

2.5 Decision Transformer

Proposed by Chen et al. [5], the Decision Transformer architecture,
see Figure 1, aims to autoregressively model a trajectory of actions,
states, and rewards using a Transformer architecture, specifically
GPT-2 [19]. The authors show the DT to perform as well as, if
not better than, current state-of-the-art model-free RL algorithms
on Atari [1], OpenAl Gym [3], and Key-to-Door [16] tasks [5].
They also show the DT’s ability to outperform RL baselines in
both sparsely rewarded tasks and problems where long-term credit
assignment is required. See Section 4.3 for further details.

Question: Where is the copper key?
Answer: Garden
Total Reward: 4.2

® @ O 60 60 6 6 6.

go east 0.1

examine twin 3
bed 1.0 wait

Figure 2: Example trajectory in the form (ry,s1, a1, 2, s2, az...rr, s7, ar) with additional data such as the total reward gained, the

question to be asked, and the final correct answer to the question.

2.5.1 Trajectory The Decision Transformer architecture, see Fig-
ure 1, aims to autoregressively model a trajectory of actions, states,
and rewards. After every episode play-through, the entire trajectory
is processed and stored in the form (ry, s1, a1, ra, $2, a2...r1, ST, AT)
where r refers to action’s reward, s is a state, and a is an action. This
can be seen in Figure 2. The trajectory representation enables simple
autoregressive training where the autoregressive GPT model can be
conditioned on reward and starting state to generate the desired ac-
tion sequence. As action prediction is based on gaining some future
reward, rather than how much reward has already been gained, Chen
et al. [5] propose conditioning actions upon the total reward that
can still be gathered from interacting with the environment. This
is referred to as the returns-to-go (RTG) R; = Zgz .7 where T is
trajectory length and r; is the reward at time step ¢. Thus the initial
return-to-go R; represents the total reward to be gained from a given
episode.

2.5.2 Reward If an agent gains some reward while interacting with
the world, this will be deducted from its returns to go from that
timestep onwards. Thus, when feeding input to the DT, this is in
the form (R, s1, a1, Ra, s2, az...Rt, sT, ar). To illustrate this concept,
Figure 2 has a total reward of 4.2. During training, we know the first
return-to-go R; will be set to 4.2, as this is the total reward to be
gained from the entire trajectory. Next, Ry will be 4.1 as a reward of
0.1 was given at ¢ = 2. Finally, at step T, Rt will be 0.0, as there is
no longer any reward to be gained.

3 RELATED WORK

3.1 Trajectory Transformer

Concurrently to work by Chen et. al. [5], Janner et. al. proposed [13]
the Trajectory Transformer (TT). At its core, the authors propose
treating a trajectory as an unstructured sequence modelled by a
Transformer architecture. As such, the architecture of the Trajectory
Transformer closely resembles that of the Decision Transformer,
albeit with minor differences. The Trajectory Transformer is trained
in a manner akin to a natural language processing task [13], which
seeks to model the joint probability distribution over a sequence of

states, actions, and rewards. During training, the standard teacher-
forcing [24] procedure is used with the dynamic-programming Beam-
Search [11] algorithm for decoding and autoregressive prediction.
This method is in contrast to the DT, where the authors combine the
tools of sequence modelling with hindsight return information in
order to achieve policy improvement without the need for dynamic
programming [5]. Both methods utilise the GPT architecture [19]
with the Trajectory Transformer having six self-attention heads and
four layers, and the Decision Transformer having eight self-attention
heads and two layers. On standard RL baselines, the DT and TT
yielded relatively similar results [5, 13] - but due to the recency of
both frameworks, no head-to-head comparison has been conducted.

4 METHODS
4.1 QAit Task

For this paper, we will be training the Decision Transformer on
trajectories generated from the 500 games fixed and random map
type settings. A key research outcome of this paper is to illustrate
the Decision Transformer’s sample efficiency and high accuracy on
QAit’s zero-shot evaluation test set. Yuan et al. [26] showed that
those highest scoring agents, with respect to QA accuracy, were pre-
dominantly trained from the unlimited games setting. We, therefore,
opt to generate offline data from the 500 games setting over unlimited
games as a means of purposefully providing the DT with suboptimal
data in the hopes that it will outperform previous baselines - thereby
illustrating our hypothesis.

4.2 Random rollouts

The key success of the Decision Transformer is the ability to learn
effective behaviour from fixed and limited experiences [5]. This abil-
ity further motivates its applicability to the QAit task, where training
is time inefficient and resource-intensive. However, converting this
RL problem into a supervised learning problem requires training
data ahead of time. Therefore, we generate datasets of offline RL
data using random rollouts for each map and question-type, holding
the number of games constant at 500. Statistics about the training
data are available in Table 1. We generated Random rollouts using a
random agent who samples actions from all admissible commands

shed

!

| softmax + lookup ‘

f

l Linear decoder]

507 4 508 509 510 1 511 ¢ 512

BERT encoder

[cLS] you are in a shed

r .ttt 1 1

[SEP] where is oven ? [SEP]

507 508 509 510 511 512

Figure 3: The QA module consists of a BERT encoder that takes as input a concatenation of multiple state descriptions. The encoder
output is feeds into a linear decoder that returns a vector where each element corresponds to a token in the QAit vocab. This vector
is then softmaxed and used to determine the most likely word in the vocab that answers the question.

for a particular gamestep. The sequence of states observed and ac-
tions performed are recorded in an offline dataset, along with the
rewards for each action. Moreover, questions and answers are also
added to the offline trajectory.

Given that the vocabulary consists of 1654 unique tokens, there
are roughly 1654> possible commands at any given timestep - most
of which are nonsensical and unable to be registered as valid by
TextWorld. The sparsity of the action space means that generat-
ing commands by randomly selecting an action, modifier, object
triple from the vocabulary would lead to largely nonsensical actions,
thereby motivating the selection of random but valid commands from
the admissible actions at step ¢. By using admissible commands in
data generation, the Decision Transformer will have the ability to
learn admissible commands from suboptimal data.

Map Question Mean Max Commands N

Type Type Reward Reward
Fixed Location 0.526 4.1 7.631 44k
Existence 0.554 3.8 8.489 39k
Attribute 0.498 3.729 7.606 36k
Random Location 0.565 4.1 7.693 41k
Existence 0.606 3.944 8.91 42k
Attribute 0.542 4.033 7.731 82k

Table 1: Average and maximum total reward gained from train-
ing set. Additionally, the average number of unique admissible
commands per trajectory is shown to illustrate the action space
from which the DT learns.

4.3 Decision Transformer

4.3.1 Architecture The Decision Transformer architecture can be
fed the last K timesteps as input allowing for K returns-to-go, actions,

and state tokens, respectively (totalling 3K tokens per timestep ¢).
The parameter K is a context window consisting of the number
of previous episodes the transformer can draw upon to inform its
decision-making. We set the maximum length of a QAit episode to
50 episodic timesteps as well as K = 50. This allows for a maximum
of 50 timesteps (or maximum length of a trajectory) to be fed as
input to the Decision Transformer at a time.

Token embeddings for states and actions are obtained using a
single embedding layer wherein the raw token inputs are projected
to an embedding dimension. Given that states and actions can be of
variable length, these embeddings are fed to a GRU encoder with the
final hidden state hj,, representing the entire encoded state or action.
Embeddings for returns-to-go R; are also learnt and projected to
the embedding dimension. Finally, an embedding for each episodic
timestep t is concatenated to each embedded token. The embedded
and positionally encoded action, state, and return-to-go inputs are
fed into the GPT model. This input architecture can be seen in Figure
1.

For any given timestep ¢, the Decision Transformer output x;
is fed into four linear decoders. Three correspond to a command’s
action, modifier, and object components with the fourth additional
linear decoder serving to predict the answer to the question at each
timestep. While not acting as the primary QA mechanism in the
architecture, the answer decoder allows the Decision Transformer to
learn some primitive level of question-answering in conjunction with
command prediction to integrate question-answering with command
generation. See Figure 1 and Algorithm 1 for more details.

We also limited the size of input states to a length of 180 tokens,
as seen in Table 2. Similar to the methodology found in Section
4.4.1, we concatenated the question to the end of a state string
and separated both by a "<|>" token in the form [STATE] <[>
[QUESTION].

Table 2: Figure showing hyperparameters used when training the Decision Transformer and the BERT QA module. For the DT,
Context length K refers to the amount of previous timesteps with which the Transformer can draw upon to navigate the environment.
Context State context window refers to the number of tokens from the state to be used for prediction. Adam [15] is used as an
optimiser in conjunction with the specified learning rate and weight decay.

Decision Transformer BERT QA module
Hyperparameters Value
Number of layers 2
Number of attention heads 8
Embedding dimension 256 64
Batch size 128 12
State context window 180 tokens 512 tokens
Context length (K) 50 -
Max Epochs 2000 30
Dropout 0.5 0.1
Learning rate 1x 1074 1x107°
Adam betas (0.9, 0.95)
Grad norm clip 0.25
Weight decay 0.1

Learning rate decay

Linear warmup and cosine decay

4.3.2 Training As actions and answers are discrete, the categor-
ical cross-entropy loss of the action, modifier, object, and answer
prediction is used for training. Chen et al.’s [5] findings indicated
predicting state and returns-to-go at each timestep did not have a
positive effect on performance, motivating us to follow suit and only
predict action. During training time, R; is set to the total possible
reward to-be-gained from a particular trajectory. This total reward
value is available as training data consists of completed sequences
of offline trajectories.

When evaluating, however, the true R; cannot be known a priori.
To reconcile this, R; is either set as a fixed value or sampled from
an exponential distribution. For each question and map type config-
uration, a set of unique evaluation games were generated wherein
an agent must interact with an environment to answer a question.
During training, the Decision Transformer is tested in the appropri-
ate set of hold-out games every 250 iterations to monitor sufficient
information scores and overfitting.

4.3.3 Action Generation Instead of greedily decoding [25], we
softmax the output of each action, modifier, and object prediction
head, creating a probability distribution that is randomly sampled
from for action generation. The additional randomness, from ran-
domly sampling over a probability distribution, minimises the risk
of the Decision Transformer entering an action loop - in which the
same command is generated continually. It also serves to better
mirror natural language, where phraseology and word-choice is non-
deterministic. However, the output of the answer prediction head is
deterministic, wherein we argmax its output to get the answer index
from the vocab.

44 QA module

4.4.1 Architecture The QA module, see Figure 3, consists of a
classification layer sitting atop a BERT encoder. A benefit of using
a BERT model is that multiple state strings can be used as context

in order to answer a question. First, states are joined together into
a single long sequence of tokens with the question appended at the
end. This concatenated state-and-question string is tokenised by a
pretrained bert-base-uncased tokeniser. This pads or truncates the
input returning a 512 token long representation then fed to the BERT
encoder. This tokeniser also separates the prompt and question using
the [SEP] tag as well as adds [CLS] and [SEP] to the beginning
and end of the string, respectively. Finally, we pass BERT’s pooled
output to a linear layer used to predict a word from the vocab that
answers the question in a manner akin to a classification task. The
classifier has two output nodes for attribute and existence questions,
one for "yes" or "no", respectively. For location type questions, the
classifier has a node for each token in vocabulary, making it identical
to the answer prediction mechanism of the Decision Transformer.

4.4.2 Training Training and validation sets are created that consist
entirely of valid trajectories. We use the validation set to save the
model with the highest out-of-sample QA accuracy. We use cate-
gorical cross-entropy to calculate loss between predicted and actual
answers. In order to gather the state-strings necessary to train the
QA module, we feed the random rollouts, used for training the DT,
back into the DT and allow for it to predict when to stop. We then
take the last 512 tokens of the trajectory’s states, from when the DT
predicted to halt, and use that as input to train the QA model.

To prevent overfitting, 20% of all offline trajectories used in the
training set are held-out for validation each iteration. The model
with the highest validation accuracy after all 30 epochs of training is
thus saved.

4.5 Validation & Tuning

We created a hold-out validation set of 50 games to evaluate the
question-answering performance of the DT and BERT model. As
previously discussed, initial returns-to-go R; cannot be known a
priori, motivating us to test different R; when evaluating the DT.

Table 3: QA accuracy and sufficient information score (in brackets) of each model following zero-shot evaluation on the test set in the
500 games setting. A bolded value indicates a score to be the highest of that question and map type configuration for the 500 games
setting. An asterisk (¥) indicates a model has the highest accuracy of all game configurations in the QAit task (see Section 2.2.3). See

training accuracies in Tables 6 and 7.

M ‘ Location Existence Attribute
odel
‘ Fixed Random ‘ Fixed Random ‘ Fixed Random

DQN 0.224(0.244) 0.204(0.216) 0.674(0.279) 0.678(0.214) 0.534(0.014)* 0.530(0.017)
DDQN 0.218(0.228) 0.222(0.246) 0.626(0.213) 0.656(0.188) 0.508(0.026) 0.486(0.023)
Rainbow | 0.190(0.196) 0.172(0.178) 0.656(0.207) 0.678(0.191) 0.496(0.029) 0.494(0.017)
DT 0.168(0.232) 0.104(0.264) 0.668(0.254) 0.722(0.277)* 0.504(0.057) 0.526(0.058)
DT-BERT | 0.232(0.232) 0.270(0.264)* 0.626(0.258) 0.654(0.277) 0.524(0.058) 0.538(0.060)

Specifically, this allows us to investigate performance in sparsely and
richly rewarded environments and the extent to which this affects the
DT’s predictive, navigational, and knowledge-gathering capabilities.
We treat this initial value as a hyperparameter and test a wide range of
values to determine the optimal starting value for each question and
map type in a manner akin to a grid-search. Similar to methodology
used by Yuan et al. [26] for selecting the best model during training,
we opt to determine the R; value based on the maximum combination
of sufficient information score and question answering accuracy. The
discussion for this is available in Section A of the Appendix.

4.6 Testing

We determine a model’s final performance using zero-shot evaluation
on a test set provided by QAit. This set consists of 500 unseen
games that aim to test an agent’s question-answering, knowledge
gathering, and generalisability skills and was used to benchmark
all previous methods abilities in the QA.it task. First, we evaluate
the Decision Transformer’s action generation and answer prediction
abilities on the test-set to assess its performance against previous
results. Next, we will replace the Decision Transformer’s answer
prediction module with the fine-tuned BERT QA model (DT-BERT)
and evaluate it on the same set.

5 RESULTS

The following sections will examine the Decision Transformer and
BERT question-answering model. We show the QA results for the
BERT model in Figure 5 and the DT’s answer prediction head in
Figure 6 for every hyperparameter R; tested. The final results are
available in Table 6 for fixed map types and 7 for random. The final
QA accuracies are also shown in Table 3 and visualised in Figure 4.

5.1 Location Questions

On the test set, we found the DT’s answer prediction head to have
a QA accuracy of 0.104 on random map games and 0.168 on a
fixed map. Thus, while outperforming the random baseline, the DT’s
answer prediction capabilities did not surpass previous RL methods
for the 500 games setting, both for fixed and random map types.
However, we found that the information gathering capacity of the
DT surpassed all prior approaches to location type questions, having
scored 0.264 on random map and 0.232 on fixed map settings.

The DT’s question-answering capacity was seemingly decoupled
from its knowledge gathering abilities. Findings by Yuan et al. [26]
showed the ability of an agent to gather information was closely
associated with its ability to answer location questions, where suffi-
cient information scores were closely related to question-answering
accuracy. This disconnect between the high sufficient information
scores of DT and its relatively poor question-answering abilities was
likely a result of the answer prediction head underfitting the training
data.

The BERT QA model achieved a QA score of 0.27 in with a
sufficient information score of 0.264 in the random map setting. In a
fixed map, the model scored a QA accuracy of 0.232 with a sufficient
information score of 0.232. Thus, the BERT model outperformed the
QA accuracy of all models trained in the 500 games setting in fixed
and random maps. The QA accuracy mirroring that of the sufficient
information score indicates perfect performance on questions of
the locality of objects. For fixed map questions, the BERT model’s
accuracy is seemingly limited by whether or not the agent manages to
navigate into the correct state, explaining the equal scores. However,
the BERT model learnt to use additional context to achieve a higher
QA accuracy than its sufficient information score for the random
map settings. This decoupling of the BERT QA model and the DT
means that a question can still be correctly answered even if the DT
stops in an incorrect state. This high accuracy mirrors the results of
the held-out validation set used when training the BERT QA model,
seen in Table 4.

5.2 Existence Questions

The DT scored a QA accuracy of 0.722 and a sufficient information
score of 0.277, outperforming all previous sufficient information
and QA accuracy baselines in the 500 games random setting (see
fixed map baselines in Table 6 for and random map in Table 7 for
the 500 games settings). However, while outperforming the DDQN
and Rainbow, the DT failed to outperform the DQN in the fixed map
setting, achieving an accuracy of 0.668 and a sufficient information
score of 0.254.

For the BERT model, zero-shot evaluation on the test set resulted
in a QA accuracy of 0.654 for random map and 0.626 for fixed
map. Thus, despite having shown promise on the hold-out set during
training, the BERT QA model could not outperform the DT’s answer
prediction head and the previous QA baselines in both the fixed map
and random map settings. While achieving well above the random

Table 4: QA accuracy of the BERT model on the 20% of held-
out trajectories during training.

Question Map Type Max Validation Accuracy
Attribute Fixed 0.780

Random 0.616
Existence Fixed 0.778

Random 0.779
Location Fixed 0.987

Random 0.988

baseline, the reasons for this underperformance are likely a result of
overfitting the training set.

5.3 Attribute Questions

The Decision Transformer scored higher sufficient information on
the test set than all previous RL baselines, achieving 0.058 in ran-
dom map and 0.057 in fixed map. Additionally, the QA accuracy of
the answer prediction head surpassed the DDQN and Rainbow in
the random map 500 games setting, with a QA accuracy of 0.526
- but failed to outperform the DQN. For fixed map, similar results
were observed wherein the DT outperformed the DDQN and Rain-
bow, scoring 0.504 but failed to beat the DQN. Despite the superior
knowledge-gathering ability of the DT, its question-answering ca-
pacity was unable to outperform the prior QA module’s maximum
accuracy of 0.530 and 0.534 for 500-games random and fixed map
settings, respectively.

During zero-shot evaluation on the test set, the BERT QA model
scored similarly to the baselines set by Yuan et al., beating the
random map baselines but failed to outperform the fixed map results
in the 500 games setting. While BERT outperformed Rainbow and
the DDQN in the fixed map setting, scoring 0.524, the QA abilities
of the DQN were unable to be surpassed. On the other hand, the
BERT model outperformed all baselines in the 500 games random
map setting, achieving the highest sufficient information score of the
attribute test set and a QA accuracy of 0.538. In both settings, we
attribute the success of DT-BERT to the BERT model’s leveraging
of pre-trained language embeddings.

6 DISCUSSION
6.1 Reward and Performance

6.1.1 Location The optimal initial return-to-go for location type
questions was determined to be 2.0 for both fixed and random map
settings, meaning exploration is not as highly encouraged as with the
existence and attribute types. In location type questions, the entity
definitively exists somewhere within the environment. This means
that the action-space required to answer questions of locality is re-
duced to traversals and basic interactions with containers. Therefore,
less exploration is needed as the information to answer a question
is more easily acquired. Too high an initial reward would therefore
promote unnecessary actions that would stand a high likelihood of
leading the agent astray from stopping in the correct state.

6.1.2 Existence Existence questions require far more exploration
of an environment than location type questions. Higher starting

rewards reflect this need for greater exploration and are associated
with better QA and sufficient information scores, as seen in Table 4.
In turn, these higher values promote a more complete traversal of
the world, allowing for gathering information required to answer the
question. However, too high an initial reward means that entering
a correct state and receiving a reward of 1.0 is unlikely to affect
the model’s decision making. If the DT has a current RTG of 5.0
and enters the correct state that rewards 1.0, the RTG from then
onwards is 4.0. The return-to-go of 4.0 does not indicate to the
model that it has entered the correct state, meaning it carries on
exploring and gathering information. Likewise, too small a reward
could prematurely cause an agent to stop exploring due to gaining
rewards for entering new states via the exploration bonus. Therefore,
we observe that the RTG value errs on the larger side, relative to all
values tested, which we posit encourages greater world exploration.
Conversely, this value cannot be too large as it needs to factor in
that a significant deduction from future reward will affect decision-
making.

6.1.3 Attribute Attribute type questions are considered the most
sparsely rewarded of all three types [26]. We would therefore ex-
pect higher rewards to be associated with better scores. The results,
however, paint a slightly different picture. In a fixed map, where the
state-space is, on average, smaller than that of random, we see that a
smaller reward yields the best score. This reduction is likely a result
of the fixed map environment having a reduced state and action
space are smaller than that of random, making too much exploration
and interaction with the environment degrade performance. On the
other hand, in a random map setting, higher rewards yielded better
QA and sufficient information scores, allowing us to conclude that
higher reward promotes more exploration and thus allows the model
to answer the question better.

6.2 DT vs DT-BERT for QA

At a high level, the performance differences between the BERT and
DT for question-answering depends on the state and action space that
the model was required to learn and navigate. To this end, we found
the Decision Transformer to have outperformed the BERT model
with respect to questions that require the modelling of long-lasting
dependencies. Such questions whose answers were more likely to
be found within the last 512 tokens saw DT-BERT achieve higher
question-answering accuracy than the Decision Transformer. There-
fore, DT-BERT outperformed the Decision Transformer’s answer
prediction capabilities in location and attribute type questions, with
the DT showing a higher accuracy on existence questions.

6.2.1 Location We observed location type questions to be more
accurately answered on the test set when using the BERT QA module
instead of the Decision Transformer’s prediction head. The reason
for this result is likely twofold. First, the BERT model learns skills
akin to basic pattern matching when answering location questions.
Thus, identifying entity and location names from state strings when
the DT predicts to stop is likely trivial to learn. Second, exploration
is not as highly encouraged with location questions as with existence
and attribute types. Less exploration means fewer states visited,
allowing the state context window to contain less noisy state strings
than other question types. We also posit that this extra context allows

Random Map

0.6-

0.4-

0.2- |I
0.0- LIL] UL I

Attribute

Existence Location

Fixed Map
0.6-
0.4-
0.2- ||
0.0- LU LD I
Attribute Existence Location

. DDQN . DQN . DT (ours) D DT-BERT (ours) D Rainbow

Figure 4: Barplot showing QA accuracy of the Decision Transformer’s answer-prediction head and the BERT QA model compared
to the DQN, DDQN, and Rainbow agents when trained in the 500 games setting. See results in Tables 6 and 7.

the BERT model to achieve a QA accuracy higher than the sufficient
information score.

6.2.2 Existence Reasoning about the existence of an object within
a TextWorld environment requires knowledge about the entirety
of the world. Therefore, existential questions require an agent to
fully explore an environment to answer whether or not an entity
exists within it. As the Decision Transformer utilises the GPT-2
architecture, GPT-2’s self-attention mechanism makes performing
long-term credit assignments on a particular state possible. The
answer-prediction head of the DT can thus draw upon informa-
tion gathered in all previous states to inform decision making and
question-answering. As a result, the ability to model dependencies
that stretch throughout all states encountered allows the DT to out-
perform the BERT model, whose context window is constrained to
512 tokens.

6.2.3 Attribute The Decision Transformer failed to outperform the
question-answering capabilities of the DT-BERT combination on
zero-shot evaluation with attribute type questions in both fixed and
random map types. Despite the Decision Transformer’s ability to
learn long-term dependencies via GPT-2’s attention mechanism, we
posit that the language embeddings of the BERT model were able to
model a richer semantic representation of TextWorld’s state-strings
than the embeddings learnt by the DT. This better capturing of the
semantic space meant that BERT could more fully utilise the context
with which it was provided by using pre-existing understanding to
help answer questions posed in natural language.

6.3 Sample Efficiency

The number of offline trajectories used to train the Decision Trans-
former is available in Table 1. The RL agents and QA module in

QAit were trained for 200K episodes. In comparison, the resulting
sufficient information and question-answering accuracies achieved
on the test-set provide an indication of the DT’s sample efficiency.
That is, the DT is able to outperform the previous RL methods when
trained on approximately 25% of the amount of episodes. Moreover,
all training data used for the DT was generated via random rollouts
- indicating that the Decision Transformer has the ability to learn
optimal policies from suboptimal data, affirming both our initial
hypothesis as well as results by Chen et al. [5]. We also found even
when fine-tuning a BERT model for QA on the random rollout data,
we managed to perform on par with the previous QA accuracies.

7 CONCLUSIONS

This paper shows that current reinforcement learning baselines set
out in the QAit task can be matched and improved upon by fram-
ing IQA as a supervised sequence modelling problem and using a
Transformer architecture for action generation and answer predic-
tion. Additionally, we showed an improved sample efficiency when
training, using a smaller training set than what reinforcement learn-
ing necessitates, consisting of suboptimal data generated via random
rollouts. Moreover, when fine-tuning a BERT model on this same
dataset for question-answering and allowing it to work in tandem
with the Decision Transformer for action generation, several QAit
QA baselines were outperformed.

8 FUTURE WORKS

For future works, we propose testing the limits of the Decision Trans-
former’s sample efficiency and generalisability. This would require
the DT be trained on extremely data deprived samples, consisting
of fewer than 10K trajectories. Furthermore, we also suggest such

an approach makes little use of exploration rewards, instead relying
purely on the Decision Transformer navigating to the correct state.
This can help to better understand the DT’s ability to assign long
term credit in sparse-reward settings - testing the extent to which its
state-of-the-art reward agnosticism can be utilised. Moreover, we
propose a Longformer [2] architecture that allows for a far greater
context window of up to 4096 tokens - testing the extent to which
extra information can aid interactive question-answering. By increas-
ing the context length, we believe QA performance would drastically
improve. Lastly, we suggest fine-tuning a BERT model, or equiv-
alent, to embed state and actions that are passed to the Decision
Transformer’s prediction heads in the hopes of utilising pre-existing
language understanding to better generate actions and predict an-
swers.

9 ACKNOWLEDGEMENTS

Thank you to Dr. Jan Buys for the invaluable guidance and assistance
throughout the duration of the project. Thank you to Dr. Jonathan
Shock for co-supervising and providing reinforcement learning in-
sights and counsel.

References

[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47 (2013), 253-279.

1z Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-

document transformer. arXiv preprint arXiv:2004.05150 (2020).

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. arXiv preprint

arXiv:2005.14165 (2020).

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael

Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021. Decision

transformer: Reinforcement learning via sequence modeling. arXiv preprint

arXiv:2106.01345 (2021).

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555 (2014).

Marc-Alexandre Coté, Akos Kadar, Xingdi Yuan, Ben Kybartas, Tavian Barnes,

Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada,

et al. 2018. Textworld: A learning environment for text-based games. In Workshop

on Computer Games. Springer, 41-75.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805 (2018).

Michael P Georgeff and Amy L Lansky. 1986. Procedural knowledge. Proc. IEEE

74,10 (1986), 1383-1398.

[10] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon,
Dieter Fox, and Ali Farhadi. 2018. Iqa: Visual question answering in interactive
environments. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 4089-4098.

[11] P Hayes-Roth, M Fox, G Gill, DJ Mostow, and R Reddy. 1976. Speech under-
standing systems: Summary of results of the five-year research effort. (1976).

[12] Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

[13] Michael Janner, Qiyang Li, and Sergey Levine. 2021. Reinforcement Learning as
One Big Sequence Modeling Problem. arXiv preprint arXiv:2106.02039 (2021).

[14] Dan Jurafsky and James H Martin. 2014. Speech and language processing. Vol. 3.
US: Prentice Hall (2014).

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[16] Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade,
Anna Harutyunyan, Will Dabney, Tom Stepleton, Nicolas Heess, Arthur Guez,
et al. 2020. Counterfactual credit assignment in model-free reinforcement learning.
arXiv preprint arXiv:2011.09464 (2020).

[2

[5

[6

[7

[8

[9

[17] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In International conference on machine
learning. PMLR, 1310-1318.

[18] Tatiana-Andreea Petrache, Traian Rebedea, and Stefan Trausan-Matu. [n.d.]. In-
teractive language learning-How to explore complex environments using natural
language? ([n.d.]).

[19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAl blog 1, 8 (2019), 9.

[20] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation.
arXiv preprint arXiv:2102.12092 (2021).

[21] Saku Sugawara, Kentaro Inui, Satoshi Sekine, and Akiko Aizawa. 2018. What
makes reading comprehension questions easier? arXiv preprint arXiv:1808.09384
(2018).

[22] M Onat Topal, Anil Bas, and Imke van Heerden. 2021. Exploring transformers in
natural language generation: Gpt, bert, and xInet. arXiv preprint arXiv:2102.08036
(2021).

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in neural information processing systems. 5998-6008.

[24] Ronald J Williams and David Zipser. 1989. A learning algorithm for continually
running fully recurrent neural networks. Neural computation 1, 2 (1989), 270—
280.

[25] Ziang Xie. 2017. Neural text generation: A practical guide. arXiv preprint
arXiv:1711.09534 (2017).

[26] Xingdi Yuan, Marc-Alexandre Coté, Jie Fu, Zhouhan Lin, Christopher Pal, Yoshua
Bengio, and Adam Trischler. 2019. Interactive language learning by question
answering. arXiv preprint arXiv:1908.10909 (2019).

[27] Xingdi Yuan, Jie Fu, Marc-Alexandre Cote, Yi Tay, Christopher Pal, and Adam
Trischler. 2019. Interactive machine comprehension with information seeking
agents. arXiv preprint arXiv:1908.10449 (2019).

A Hyperparameter Tuning
A.1 Decision Transformer

A.1.1 Location As can be seen in Table 5, the sufficient informa-
tion score peaking at R; = 2 indicates optimal state-space exploration
for location questions when the potential for future reward is mod-
erate for random and fixed map types. While the QA accuracy was
highest for both settings when the initial reward was the maximum
of the training set, we opted to test the DT’s question answering
and information gathering capabilities at Ry = 2 as this yielded the
highest combined sufficient information and QA accuracy score.

A.1.2 Existence Using both sufficient information and QA accu-
racy, the optimal initial reward for fixed map existence questions
was determined to be 4.0, with the DT achieving a QA accuracy of
0.660 and a sufficient information score of 0.263 on the validation
set. In random map settings, the DT scored a validation accuracy of
0.720 with a corresponding sufficient information score of 0.298,
where the initial reward was determined to be the maximum of the
training set 3.94.

A.1.3 Attribute The best sufficient information and QA accuracy
combinations for the Decision Transformer were achieved at an
initial reward of 2.0 for fixed and 5.0 for random map types. On the
validation set, the fixed map DT achieved a QA accuracy of 0.533
and a SI score of 0.056. Random map saw a similar SI of 0.057 but
worse QA accuracy of 0.460.

A.2 BERT Model

A.2.1 Location Based on data gathered using the online-evaluation
dataset, the optimal initial return-to-go for location type questions
was 2.0. Using the BERT model for QA yielded an accuracy of
0.227 for fixed maps and 0.393 for random maps. The BERT model

achieved a higher QA accuracy than sufficient information score
during evaluation, indicating that the context window spanning mul-
tiple states was a boon to QA accuracy. During training, the BERT
model achieved almost perfect scores for question-answering on the
held-out set of offline trajectories, seen in Table 4.

A.2.2 Existence Using the online-validation set, we determined
optimal starting reward values of 3.0 for fixed map and 3.94 for
random. These values were associated with a QA accuracy of 0.64
for fixed and 0.647 for random map types. However, scores were
significantly lower than the offline validation set used during training,
where QA accuracy of 0.778 and 0.779 was achieved for fixed and
random maps, respectively.

A.2.3 Attribute In the offline validation set, the BERT model scored
a QA accuracy of 0.616 for random and 0.780 for fixed map settings.
On the online validation set, we observed the maximum combination
of QA and sufficient information for the BERT model at an R; of
3.0 for fixed and 2.0 for random where the BERT QA model had
an accuracy of 0.507 and 0.660 for random and fixed map types,
respectively. However, we opted to use the maximum of the train
set 4.03 when evaluating on the test set for random map types. This
is due to the BERT QA model having a high standard deviation
of 0.156 and an average QA accuracy of 0.640, indicating greater
potential for high QA accuracy. Moreover, the sufficient information
score associated with this accuracy is 0.056 - higher than the random
map with an initial reward of 2.0.

Table 5: Question-answering accuracy of BERT model and Decision Transformer’s answer prediction head as well as Decision Trans-
former’s average sufficient information (SI) score on validation set at different initial return-to-go (RTG) values. Bold values indicate
the combined highest QA and sufficient information score with the associated initial RTG value also bolded. Sampling indicates
R; was randomly sampled from an exponential distribution. Max represents the maximum of the training set for that experiment
configuration (see Table 1). Summary statistics were calculated over 4 seeds - see code implementation for details.

Question Type
Attribute
Fixed ‘ Random
Initial RTG BERT DT SI ‘ BERT DT SI
1 0.427 £0.0416 0.493 +£0.0306 0.052 +£0.0135 | 0.567 £0.0306 0.433 +0.0231 0.050 £ 0.0083
2 0.473 £0.0503 0.533 £ 0.0115 0.056 = 0.0094 | 0.660 = 0.0200 0.453 £ 0.0306 0.048 £ 0.0039
3 0.367 £0.0503 0.480 +0.0400 0.051 £0.0043 | 0.620 £0.0529 0.447 +0.0503 0.054 +0.0034
4 0.507 £ 0.0643 0.480 +0.0529 0.056 = 0.0058 | 0.560 +£0.1058 0.400 +0.0693 0.054 +0.0014
5 0.487 £0.0503 0.500 £ 0.0200 0.056 £ 0.0007 | 0.620 £ 0.0000 0.460 = 0.0346 0.057 = 0.0033
Sampling 0.487 £0.0416 0.453 £0.0231 0.051 £0.0050 | 0.593 £0.0503 0.433 +£0.0231 0.052 +0.0097
Max 0.487 £0.0503 0.493 +0.0643 0.055+0.0021 | 0.640 = 0.1562 0.440 +0.0200 0.056 = 0.0020
Existence
Fixed ‘ Random
Initial RTG BERT DT SI BERT DT SI
1 0.600 £0.0721 0.640 £ 0.0200 0.216 £0.0314 | 0.680 £0.0917 0.747 £0.0115 0.200 £ 0.0416
2 0.533 £0.0702 0.660 +0.0346 0.259 £0.0051 | 0.653 £0.0611 0.687 +0.0306 0.277 £0.0441
3 0.640 £ 0.0721 0.647 +£0.0115 0.265 £ 0.0161 | 0.607 £0.0306 0.733 +£0.0115 0.269 £ 0.0075
4 0.580 £0.0529 0.660 = 0.0400 0.263 = 0.0180 | 0.633 £0.0577 0.707 £0.0306 0.291 £ 0.0476
5 0.633 £0.0702 0.680 +0.0200 0.222 +£0.0166 | 0.620 £0.0721 0.700 + 0.0200 0.310 % 0.0205
Sampling 0.613 £0.0416 0.647 +£0.0231 0.180 £0.0467 | 0.653 £0.0416 0.707 £0.0416 0.250 = 0.0070
Max 0.587 £0.0306 0.640 +0.0200 0.270 £ 0.0409 | 0.647 = 0.0115 0.720 = 0.0400 0.298 = 0.0302
Location
Fixed Random
Initial RTG BERT DT SI BERT DT SI
1 0.165+0.0191 0.175+0.0379 0.165+0.0191 | 0.267 £0.0306 0.107 £0.0115 0.267 = 0.0306
2 0.227 £0.0231 0.167 £ 0.0115 0.233 £0.0115 | 0.393 £ 0.0416 0.080 = 0.0200 0.387 = 0.0503
3 0.187 £0.0416 0.167 +£0.0306 0.187 £0.0416 | 0.307 £0.0306 0.120 + 0.0200 0.307 = 0.0306
4 0.173£0.0115 0.133 £0.0231 0.173£0.0115 | 0.360 £0.0400 0.093 +£0.0115 0.347 £ 0.0306
5 0.167 £0.0462 0.160 £ 0.0200 0.167 £0.0462 | 0.340 £0.0346 0.080 + 0.0346 0.333 £ 0.0306
Sampling 0.160 £0.0200 0.167 £0.0416 0.167 £0.0115 | 0.287 £0.0757 0.107 £0.0306 0.287 +£0.0757
Max 0.193£0.0231 0.187 £0.0115 0.193 £0.0231 | 0.333 £0.0945 0.120 +0.0200 0.327 +£0.0702

Random Map Fixed Map

0.8- 0.8-
e
0.6- 1[0.6- l[
0.4- 0.4-
0.2- ‘ || 0.2- |'
0.0- LU LU L 0.0- L oL I I

Attribute Existence Location Attribute Existence Location

s 1 3 5 []wm
Initial RTG l 9 l 4 H -

Figure 5: Barplot showing QA accuracy of the BERT QA model on the validation set when trained in the 500 games setting with
different initial returns-to-go (RTG). See results in Table 5.

Random Map Fixed Map
0.8~ 0.8-

0.6- 0.6-

0.4- 0.4-

0.2- 0.2- '

0.0- - 1= I'III-H 0.0- LI LI III

Attribute Existence Location Attribute Existence Location

Initial RTG l ; l i H g E ~

Figure 6: Barplot showing QA accuracy of the Decision Transformer’s answer-prediction head on the validation set when trained in
the 500 games setting with different initial returns-to-go (RTG). See results in Table 5.

—t—
——

=
——

——
=

Code Listing 1: Pseudocode showing the training and evaluation of the Decision Transformer for the QAit task.

R, s, a, t: returns-to-go, states , actions , or timesteps

transformer: transformer with causal masking (GPT)

embed R: linear embedding layer

embed words: linear layer embedding for both states & actions
embed t: learned episode positional embedding

encoder: GRU encoder for embedded states & actions

pred a: linear action prediction layer

pred m: linear modifier prediction layer

pred o: linear object prediction layer

pred_ans: linear answer prediction layer

main model
def DecisionTransformer(R, s, a, t):
compute embeddings for tokens
pos_embedding = embed_t (t) # per timestep, not per token

states and actions are first embedded and then encoded with a GRU
s_embedding = encoder (embed_words (s)) .last_hidden_state + pos_embedding
a_embedding = encoder (embed words(a)) .last_hidden_state + pos_embedding
R_embedding = embed R(R) + pos_embedding

interleave tokens as (R.1, s 1, a1, ..., R K, s K, a_k)
input_embeds = stack (R_embedding, s_embedding, a_embedding)

input interleaved embeddings and get hidden states
hidden_states = transformer (input_embeds=input_embeds)

select hidden states for command prediction
s_hidden = unstack (hidden_states) .states

predict answer to question and action, modifier, object of command given state
action = pred_a(s_hidden)

modifier = pred o(s_hidden)

object = pred_a(s_hidden)

answer = pred_ans (s_hidden)
return action, modifier, object, answer

training loop
for (R, s, a, t) in dataloader:
a_preds = DecisionTransfomer (R, s, a, t)
loss = cross_entropy(a_preds, a)
optimizer.zero_grad(); loss.backward(); optimizer.step()

evalutation loop

initial reward = 1 # sampled from an exponential distribution or fixed
env = load_textworld env ()

R, s, a, t, done = [initial_reward], [env.reset()], [], [1l], False

while not done:

act, mod, obj, _ = DecisionTransformer(R, s, a, t)[-1]
command = act + mod + obj # join action, modifier, and object together
new_s, r, done = env.step (command)

R = R + [R[-1] - r] # decrement return-to-go with reward
s, a, t = s + [new_s], a + [action], t + [len(R)]
R, s, a, t = R[-K]

Table 6: Results of Fixed Map Experiments

Fixed
Mode Location Existence Attribute
Train Test Train Test Train Test
Random - 0.027 - 0.497 - 0.496
500 games
DQN 0.430 (0.430) | 0.224 (0.244) | 0.742 (0.136) | 0.674 (0.279) | 0.700 (0.015) | 0.534 (0.014)
DDQN 0.406 (0.406) | 0.218 (0.228) | 0.734 (0.173) | 0.626 (0.213) | 0.714 (0.021) | 0.508 (0.026)
Rainbow | 0.358 (0.358) | 0.190 (0.196) | 0.768 (0.187) | 0.656 (0.207) | 0.736 (0.032) | 0.496 (0.029)
DT - 0.168 (0.232) - 0.668 (0.254) - 0.504 (0.057)
DT-BERT - 0.232 (0.232) - 0.626 (0.258) - 0.524 (0.058)
Table 7: Results of Random Map Experiments
Random
Mode Location Existence Attribute
Train Test Train Test Train Test
Random - 0.034 - 0.5 - 0.499
500 games

DQN 0.430 (0.430) | 0.204 (0.216) | 0.752 (0.162) | 0.678 (0.214) | 0.678 (0.019) | 0.530 (0.017)
DDQN 0.458 (0.458) | 0.222 (0.246) | 0.754 (0.158) | 0.656 (0.188) | 0.716 (0.024) | 0.486 (0.023)
Rainbow | 0.370 (0.370) | 0.172 (0.178) | 0.748 (0.275) | 0.678 (0.191) | 0.636 (0.020) | 0.494 (0.017)
DT - 0.104 (0.264) - 0.722 (0.277) - 0.526 (0.058)
DT-BERT - 0.270 (0.264) - 0.654 (0.277) - 0.538 (0.060)

Table 8: Heuristic conditions for determining whether the agent has enough information to answer a given attribute question. We use
“object” to refer to the object mentioned in the question. Words in italics represent placeholders that can be replaced by any object
from the environment that has the appropriate attribute (e.g. carrot could be used as a cuttable). Pass and Fail columns represent
how much reward the agent will receive given the corresponding command’s outcome (resp. success or failure). [26]

Attribute Command State Pass Fail Explanation
holding (cuttable) Trying to cut something cuttable
shar cut cuttable & uncut (cuttable) 1 1 that hasn’t been cut yet
P & holding (object) while holding the object.
‘ take object ‘ reachable(object) ‘ 0 ‘ 1 ‘ Sharp objects should be portable.
. holding (object) Trying to cut the object while holding
cuttable cut object & holding (sharp) ! ! something sharp.
‘ take object ‘ reachable (object) ‘ 0 ‘ 1 ‘ Cuttable object should be portable.
edible ‘ eat object ‘ holding (object) ‘ 1 ‘ 1 ‘ Trying to eat the object.
‘ take object ‘ reachable (object) ‘ 0 ‘ 1 ‘ Edible objects should be portable.
drinkable ‘ drink object ‘ holding (object) ‘ 1 ‘ 1 ‘ Trying to drink the object.
‘ take object ‘ reachable (object) ‘ 0 ‘ 1 ‘ Drinkable objects should be portable.
) ‘ on (portable, object) ‘ 1 ‘ 0 ‘ Observing object(s) on a supporter.
holder ‘ ‘ in (portable, object) ‘ 1 ‘ 0 ‘ Observing object(s) inside a container.
‘ take object ‘ reachable (object) ‘ 1 ‘ 0 ‘ Holder objects should not be portable.
portable ‘ - ‘ holding (object) ‘ 1 ‘ 0 ‘ Holding the object means it is portable.
‘ take object ‘ reachable (object) ‘ 1 ‘ 1 ‘ Portable objects can be taken.
holding (cookable) Trying to cook something cookable
heat source cook cookable | & uncooked (cookable) 1 1 that hasn’t been cooked yet
- & reachable (object) while being next to the object.
‘ take object ‘ reachable (object) ‘ 1 ‘ 0 ‘ Heat source objects should not be portable.
. holding (object) Trying to cook the object
cookable cook object & reachable (heat_source) ! ! while being next to a heat source.
| take object | reachable(object) |0 |1 | Cookable objects should be portable.
. reachable (object) . .
openable open object & closed (object) 1 1 Trying to open the closed object.
. reachable (object) . .
close object & open (object) 1 1 Trying to close the open object.

