
The Role of Graph Attention Networks in Interactive Question
Answering Systems

Roy Cohen
CHNROY002@myuct.ac.za

UCT Computer Science Honours

ABSTRACT
The ability for models to achieve humanlike language comprehen-
sion abilities has been a long aspired goal of artificial intelligence
and many natural language processing tasks. Interactive Question
Answering (IQA) has been proposed to address the lack of under-
standing and comprehension abilities of current systems. To this end,
the Question Answering with interactive text (QAit) task was created
using text-based environments and provides a framework for training
and evaluating a models ability to perform IQA and thus displaying
its knowledge gathering capabilities. This paper aims to investigate
the use of Graph Attention Networks in providing additional con-
text to agents to increase their question-answering abilities. Results
indicate that Graph Attention Networks can increase the question
answering accuracy of an agent when training on data containing
high variability, thus improving the agent’s generalisation abilities.

KEYWORDS
Question Answering Systems, Interactive Question Answering, Graph
Attention Network, Graph Neural Network, Natural Language Pro-
cessing, Reinforcement Learning, Text-based Games.

1 INTRODUCTION
Machine reading comprehension’s (MRC) primary focus is on the
retrieval of explicitly stated knowledge or static descriptions of
entities, known as declarative knowledge, within text or knowledge-
bases (KBs) [48]. Evidence suggests that current MRC and neural
methods find it challenging to acquire actual comprehension and
understanding that is deemed necessary in many Natural Language
Processing tasks, such as question-answering [41, 48, 50].

Simple pattern matching of natural language as a method of
extracting knowledge from a knowledge source is preponderance
when training models on current MRC datasets [49]. Current models
lack essential humanlike skills needed to interact with and observe
environments to gain understanding about it. Simple pattern recogni-
tion does not reward behaviour necessary to answer many natural
language questions, such as information-seeking [32]. To promote
information-seeking behaviours, procedural knowledge rewards a
model for gathering the declarative knowledge required to answer
a question. Procedural knowledge thus shifts the focus from being
less on answering the question or completing a task but rather on the
actions performed to complete the task.

A proposed solution to the lack of understanding and comprehen-
sion of current methods is Interactive Question Answering (IQA).
IQA is a combination of question answering systems and dialogue
systems, where question answering requires a system to ask ques-
tions in natural language about some dynamic environment and
receive answers from the model. In contrast, dialogue systems en-
able the model to exchange in dialogue with the system in cases

where there are multiple answers, no answers, ambiguity, or the
model needs to take actions to arrive at the solution [21, 31]. The
aforementioned environment can take many forms, such as a KB
[18], some entity-relation schema or a text-based game [14, 48].

Text-based games are slowly becoming a de facto standard for
dynamic environments, as it allows for language-learning problems
to be tackled using various reinforcement learning (RL) methods in
dialogue-like settings [28, 37]. One of the more popular text-based
game frameworks is Microsoft TextWorld [14, 37], which was used
by Yuan et al. to develop the Question Answering with Interactive
Text (QAit) task [48]. The task allows an agent to interact with a
partially observable text-based environment to answer questions in
a procedural knowledge setting about the location, existence and
attributes of objects in the environment. To complete the task, the
agent must successfully gather and seek out information to answer
questions.

Within the context of TextWorld, however, many agents fail to
generalise and capture necessary meaning and relationships between
entities found in the environment [49]. A model failing to develop
some contextual awareness of the world can be detrimental to per-
formance. Current works indicate knowledge graphs (KGs) help
express supplementary information about the world to facilitate
decision-making better whilst adhering to partial observability [2–
4].

This paper explores the use of Graph Attention Networks in pro-
viding an RL agent with some contextual understanding about the
environment with which it inhabits, which has shown to aid aspects
of performance such as steps required to complete a task and training
convergence [3]. This additional context results in action sequences
better suited to goal achievement by providing circumstantial infor-
mation regarding the action space. Therefore, by embedding specific
details about an environment into a knowledge graph and allowing
an agent to use it to inform decision-making, this paper explores
the effects of Graph Attention Networks on agents’ accuracy on the
QAit task [49].

More specifically, this paper aims to answer the following re-
search questions:

(1) Do Graph Attention Networks increase an RL agent’s question-
answering capabilities?

(2) Can Graph Attention Networks speed up the training conver-
gence of an agent in an IQA system?

2 BACKGROUND
2.1 Knowledge Bases
Knowledge Bases (KBs) are frequently used as a structured database
that stores data in the form of tuples. Tuples are in the form of
<head, relation, tail> [10, 19, 47] and natural language
questions are typically translated into a KB query in the form of

Figure 1: A small piece of a KB represented as a KG, from Das
et al. "Go for a walk and arrive at the answer: Reasoning over
paths in knowledge bases using reinforcement learning" [16].
Solid edges are KB relations and dotted lines are queries.

<head, relation, ?>. An example of this would be <Cape
Town, cityIn, South Africa> where the tail entity would
be the answer to the question.

Since the introduction of free large-scale tuple based KBs, such
as Freebase [9], and DBPedia [6], they have been extensively used
as an open-domain source of information for many different Natural
Language Processing tasks such as entity-linking, relation extraction,
and question answering systems [29, 40].

A Knowledge Graph (KG) is a graph-based representation of
a KB created by treating entities as nodes and relations as edges,
which is illustrated in Figure 1. KGs can express context by stor-
ing necessary information relating to a task and, more importantly,
storing information relating to a task’s past events, which can aid
in the long-term memory of agents or models. Using KGs to store
tuples related to the context of a problem has demonstrated the abil-
ity to improve natural language understanding in Natural Language
Processing tasks both inside and outside of text adventure games
[2–4, 23].

2.2 Graph Neural Networks
Many tasks such as image classification, semantic segmentation
or machine translation have an underlying data representation of a
grid-like structure [44] and thus have been successfully modelled
using Convolutional Neural Networks (CNNs) [20, 24, 25]. However,
many tasks involve data that cannot be represented in such a structure
but rather in an irregular domain that is representable as graphs (e.g.
3D meshes, telecommunication networks) [44].

Graph Neural Networks (GNNs) [22, 39] were developed to deal
more generally with different classes of graphs such as cyclic, di-
rected or undirected through the use of recursive neural networks.
The iterative process of GNNs produces an output for each node in
the graph based on its state; this is done by propagating the node
states until equilibrium, then inputting the node representation into
a neural network. GNNs were later improved through the use of
Gated Recurrent Units (GRUs) [13] when propagating node states
[33]. GNNs effectively transform graphs, such as KGs, into different
representations that fit the domain on which they are trained.

Figure 2: Sequence-to-sequence model architecture, from Juraf-
sky "Speech and language processing" [27].

More recently, the idea of attention mechanisms was incorporated
in GNNs to produce the Graph Attention Network (GAT) [44], man-
aging to achieve or match state-of-the-art results. The GAT computes
the representations of each node in the graph by attending over its
neighbours, following a self-attention strategy (see Section 4.3).

2.3 Sequence-to-sequence Models
Sequence-to-sequence models, are models that manage to compute a
contextual output sequence that isn’t limited by output length. Many
applications exist for sequence-to-sequence models such as semantic
parsing [35], syntactic parsing [45], image captioning [46], machine
translation [13, 30], etc.

The underlying architecture is to have an encoder network that
translates natural language into a contextualisation representation
of itself (the context vector) [27]. The decoder then processes the
context vector, which outputs a sequence of tokens. Figure 2 shows
a visual representation of the sequence-to-sequence model.

The use of Recurrent Neural Networks (RNNs) [13] as the en-
coder and decoder in a sequence-to-sequence model allows the
model to process variable-length inputs and outputs [34]. RNNs are
neural networks that contain cycles [27]. Thus the encoder-decoder
RNNs are trained together to learn to encode any length natural
language input into a set length context vector and decoded back
into a sequence of natural language tokens [34].

Sequence-to-sequence encoders’ ability to encode variable-length
input allows components with variably sized outputs (such as KGs
and GNNs) to be transformed into a fixed-length representation.
Fixing the output size of a component that otherwise is variable in
length makes for easier integration of the component with the rest of
the architecture.

2.3.1 Transformers. Transformers [43] are sequence-to-sequence
models that approach the sequence processing task by eliminating
recurrent connections [26]. Transformer encoders are comprised of
a self-attention layer, feedforward neural network, a normalization
layer [7] along with custom connections around them. The key dif-
ference between transformers and other sequence processing models
is its use of self-attention layers.

2.3.2 BERT. Bidirectional Encoder Representations from Trans-
formers (BERT) [17] is a Transformer-based pre-trained model that
achieves state-of-the-art performance when fine-tuned to create mod-
els for a wide range of tasks. Without needing to fine-tune BERT, it
can act as a state-of-the-art word embedder, which translates natural
language to vector representations [11].

2.4 Reinforcement Learning
Reinforcement Learning (RL) is a machine learning paradigm where
an agent learns how to behave by mapping situations in an environ-
ment to actions so that it can maximise a reward signal it receives
for performing these actions [42].

Reinforcement Learning frames the decision-making problem
into a Markov Decision Process (MDP) [8, 38], a mathematics-
based method for solving decision-making problems with four key
elements.

2.4.1 Elements of MDP. A policy dictates the agent’s way of
making decisions by mapping a set of observed states in the envi-
ronment to actions it will perform [42]. Generally, policies can be
stochastic by providing a probability for each action.

A reward signal defines a reinforcement problem’s goal by pro-
viding a reward to the agent for making decisions (i.e. actions which
will lead the agent closer to its goal will have more rewards than
ones that do not). The agent’s objective is to make decisions that
will maximise its rewards. Furthermore, it is the reward function that
will motivate a change in an agents policy. If a policy’s action leads
to low rewards, then the policy may be altered [42].

While the reward signal indicates immediate rewards for taken
actions, the value function specifies what action is good in the long
run [42]. In other words, the total amount of reward expected from
the agent over multiple time steps. The agent must learn the value
function to maximise the long term effect of taking an action by
considering the available actions and rewards in the next state [42].

The last element is the model, which allows for inferences about
what is accessible to the agent regarding actions in the environ-
ment—effectively allowing an agent plan for future states and their
rewards. As this element is not always available to the agent, RL
algorithms that do not use a model are model-free, whereas ones
with models are model-based [42].

2.5 TextWorld
In 2019, Côté et al. [15], introduced TextWorld, which is a Python
library that provides an interactive text-based partially-observable
environment for Reinforcement Learning agents to train and learn
various skills such as decision making and language comprehension.
More specifically, it creates a framework for interactive text-based
games to be developed. As a text-based game, TextWorld can be
used to research and develop more generalised QA systems [1].

The interactive environment created is based on a provided or
randomly generated KB, where entities and relations translate to
locations and actions in TextWorld, allowing agents to roam the
environment and maximise their rewards by learning the optimal
policy.

3 RELATED WORK
3.1 Interactive Question Answering
In 2019, Yuan et al. [49] developed the Question Answering with
Interactive Text (QAit) task, which introduces a text-based question
answering task. To complete the task, agents must interact with a
TextWorld environment and gather information required to answer

Figure 3: An agent interacting with a text-based environment
in order to gather necessary information to answer a question
(example from [49]).

given questions, as seen in Figure 3. The purpose of the task is to de-
velop agents with greater generalisability and language understand-
ing. The task also proposes and evaluates a set of deep reinforcement
learning baseline agents for future research to evaluate against their
agents.

The task includes three baseline agents to evaluate against, namely
the DQN, DDQN and Rainbow, some of which are the current
best performing models on the QAit task. The baseline agent used
in this paper, the DQN [36], consists of four main components:
the encoders, an aggregator, a command generator and a question
answerer, as depicted in Figure 4. The encoders are responsible for
getting vector representations of the environment description and the
question at each time step, while the aggregator combines them into
a single representation. In contrast, the command generator and the
question answerer utilise the aggregated representation to perform
action pruning and the answering of the given question once the
agent stops exploring, respectively.

3.2 GAT based RL agents in Text-Based Games
In 2019, Ammanabrolu et al. [2] showed how constructing a KG
based on the observation descriptions provided by a text-based envi-
ronment along with a GAT allowed an RL agent to learn a control
policy faster than alternative baseline agents of text-based games.
Additionally, the GAT allowed the agent to finish the game in fewer
steps than other baselines. However, despite these benefits, the GAT
assisted agent had worse results in the text-based games than the
alternative baselines and underperformed overall.

While the reason for this shortcoming is not made abundantly
clear, the implementation failed to take full advantage of the variable

Figure 4: QAit task’s baseline agent architecture.

sizing of GATs’ inputs and outputs and instead kept the input into
the GAT constant (i.e. same number of nodes) and only changing
the relations (edges) connecting them. While this does not affect the
GAT itself, it has broader implications on the system’s performance
and generalisability.

In order to have a fixed-sized input into the GAT, the system
must know the total number of possible entities (nodes) the KG will
encounter during the task. Meaning that a pre-processing agent was
used to gather as many entities as possible from the training data
before training commences, after which no new entities discovered
were added to the KG during training (i.e. the KG will ignore any
entities not discovered by the pre-processing agent). These imple-
mentation details would result in poor generalisability on unseen
environments and likely explain the lack of comprehension abilities
of the agent, which could have played a factor in the underwhelming
performance of the model.

4 DESIGN AND IMPLEMENTATION
4.1 The QAit Task
4.1.1 Environment & Difficulty. As done by Yuan et al., Textworld
will be used jointly with the QAit’s world and question pair genera-
tor [49], which generates question-answer pairs related to TextWorld
environments. QAit provides a framework for testing an agent’s lan-
guage comprehension abilities by asking various questions about an
environment that require an understanding of locality, existence, and
attributes. Environments have two different configurations, namely
fixed and random maps. As shown in Table 1, fixed maps generate
TextWorld environments with a fixed number and layout of rooms
within the environment, whereas, with random maps, these numbers
and layouts are sampled from a uniform random distribution.

The QAit task has fixed map and random map baseline agents for
agents trained on 1, 2, 10, 100, 500 and unlimited games. Unlimited
games entail generating games during training by randomly sampling
the various environment parameters tabulated in Table 1.

Lastly, the QAit task provides two test sets that constitute 500
never-before-seen games, one for fixed maps and another for random
maps. These games, held out during training and each containing a
single question the agent must answer, were proposed by Yuan et al.
to assess a model’s generalisation abilities in a manner analogous to
the test set of supervised learning problems.

Table 1: Distribution of locations and entities within QAit’s gen-
erated environments for fixed and random maps. [49]

Fixed Map Random Map
Locations, 𝑁𝑟 6 𝑁𝑟 ∼ Uniform(2, 12)
Entities, 𝑁𝑒 𝑁𝑒 ∼ Uniform(3 ·𝑁𝑟 , 6 · 𝑁𝑟)

4.1.2 Question Types. The QAit task outlines three types of
questions the agent will be attempting to answer based on the world
generated:

• Location: Location type questions entail asking the agent
to find the location of objects, such as "Where is the box of
cereal" which would expect an answer like "pantry".

• Existence: These questions concern the existence of objects
in the world, and an example of this question would be "Is
there a scooter in the world" where the correct response would
be a yes or no.

• Attribute: Attribute questions, deemed the most challenging,
ask about the object’s attributes, such as "Is the car red?"
where the correct answer would be a yes or no. In order
to avoid the agent simply memorizing attributes of objects,
such as "Is a pizza edible", which would remain true between
different games, objects are assigned random fictitious names.

4.2 Knowledge Graph Construction
In order for an agent to learn a KG, a set of RDF triples, i.e. a tuple of
(subject, relation, object) are to be extracted and stored. The tuples
are extracted from the observations provided by TextWorld at each
agent step using Standford’s Open Information Extraction (OpenIE)
[5]. However, OpenIE was not designed with the regularities of Text-
based adventure games in mind. To remedy this, Ammanabrolu et al.
[2] outlined a set of heuristic-based rules to fill in the information
not inferred by OpenIE. Combining the information extracted from
OpenIE with the additional rules results in a KG that can provide an
agent with representation of the game world.

Every time the agent acts, the KG updates to reflect the new
information provided by the game. However, to provide the agent
with both long term and short term context, a special node "you"
is introduced to reflect what entities are currently applicable to the
agent, as depicted in Figure 5. Using the "you" node, Ammanabrolu
et al. [2] developed the following set of rules used to update the
graph after each agent action:

• Create a link between the current room node (e.g. "bedroom")
to nodes representing the items found in the room, using the
relation "has" (e.g. <bedroom, has, bed>).

• Linking information regarding entrances and exits to the cur-
rent room node (e.g. <bedroom, has, exit to south>).

• All relations relating to the "you" node are removed, except
for the nodes representing an agent’s current inventory in the
game (e.g. <you, have, key>).

• Link the different room nodes with directions based on the
agent’s action taken to move between the rooms (e.g. <bath-
room, east of, bathroom>).

Figure 5: Knowledge Graph updating from one observation to
the next given the agent action "go north".

OpenIE extracts all the other RDF triples added to the KG. Figure
5 shows an example of the KG updating given two observations and
an action.

4.3 Graph Attention Network
The KG constructed at each agent action (see Section 4.2) provides
the basis of the input into the GAT. The GAT’s input is a set of
node features, h = {®ℎ1, ®ℎ2, ..., ®ℎ𝑁 }, ℎ𝑖 ∈ R𝐹 , where N is the number
of nodes and F is the number of features in each node. As such,
each node in the constructed KG gets represented as a set of fea-
tures. A pre-trained BERT model [17] obtains the set of features
by embedding the natural language label of each node into a vector
representation of size 512 (i.e. a node embedding).

4.3.1 Graph Attention Layer. In the Graph Attention Layer [44],
the set of node features undergo a shared learnable linear transforma-
tion W ∈ R𝐹×𝐹 . A self-attention mechanism is then applied which

consists of weight vector 𝑎 ∈ R2𝐹 and the LeakyReLU nonlinearity
(with negative input slope 𝛼 = 0.2):

𝑒𝑖 𝑗 = LeakyReLU(®𝑎𝑇 [W®ℎ𝑖 | |W®ℎ 𝑗]) (1)

where .𝑇 represents transposition and | | is the concatenation oper-
ation.

The graph structure is then injected into the process by performing
masked attention - 𝑒𝑖 𝑗 is only computed for nodes 𝑗 ∈ 𝑛𝑖 , where 𝑛𝑖
is the first-order neighbours of node 𝑖 in the graph. The attention
coefficients are then computed by normalizing 𝑒𝑖 𝑗 across all choices
of 𝑗 using the softmax function:

𝛼𝑖 𝑗 = softmax𝑗 (𝑒𝑖 𝑗) =
exp(𝑒𝑖 𝑗)∑

𝑘∈𝑛𝑖 exp(𝑒𝑖𝑘)
(2)

After which, the normalized attention coefficients are used to
compute a linear combination of the features corresponding to
them, to produce the set of final output features for every node
h’ = ®ℎ′1, ®ℎ′2, ..., ®ℎ′𝑁 , ℎ′

𝑖
∈ R𝐹 which is the GAT’s output.

4.3.2 Variable Length Input/Output. Both the GAT’s input and
output are variable in length as the number of inputted nodes depend
on the agent’s phase in the game and how many entities are in the
graph, which can vary from game to game and action to action.

In order to allow the agent to utilize the GAT’s output when
deciding which action to perform or how to answer a question, the
GAT’s output’s length needs to be of fixed length to allow integration
into QAit’s baselines agent’s architecture. A single layer trainable
Transformer encoder [43] achieves this by taking the GAT’s output
as input to produce a fixed-length vector representation for the agent,
effectively summarizing the transformed KG into a fixed-length
vector representation.

4.4 Architecture
Figure 6 shows the complete process, at each time step t, of the
implemented system and its core components. The KG Construc-
tor takes in the observation provided by TextWorld at time step t
(denoted as 𝑂𝑡), the agent’s previous action 𝐶𝑡−1 and the extracted
relations and entities from OpenIE. Utilising the three inputs, it uses
the set of heuristic rules defined in Section 4.2 to construct a KG. The
constructor then uses a BERT model to obtain a set of node features
at each time step ℎ𝑡 . The GAT uses ℎ𝑡 along with the edge indices
(i.e. each node’s first order neighbours) from the constructed graph
to produce the set of output features ℎ′𝑡 . The Transformer Encoder
turns the produced node features, ℎ′𝑡 , into a fixed-length summary 𝑆𝑡 .
𝑆𝑡 is then utilised by the QAit’s Command Generator when ranking
actions to perform and by the Question Answerer when answering
questions. The length of 𝑆𝑡 is set to 64 in the experiments to mirror
the size of the match representation (𝑀𝑡 in Figure 4), which is the
other input into the Command Generator and Question Answerer,
respectively.

5 EXPERIMENT DESIGN
5.1 Experiments
Due to time and computational resource constraints, only a subset
of the total experiment settings offered by the QAit benchmark is

Figure 6: The overall process and architecture of the imple-
mented system, including all inputs and outputs of the compo-
nents required.

selected. There are six core experiments, with all six experiments
trained on 500 different games with QAit’s vanilla DQN agent. The
DQN agent’s simplicity compared to the other agents means it will
have the least complexities or external factors to consider, which
will maximise the paper’s ability to infer the effect GATs have
on an agent’s question-answering ability when used as additional
information. 500 games are chosen as the number of training games
as it will not have too little training data, which could hinder the
model’s performance. Furthermore, 500 games is not an infinite
amount, like unlimited games, which is not available for agents in
most instances of IQA, allowing us to evaluate the effectiveness of
GATs in IQA systems more generally.

The six experiments will be a combination of the type of ques-
tions asked (location, existence or attribute) and the type of game
map (fixed or random maps). Fixed maps mean all the games in
the training set will have the same number of rooms and thus less
variability; conversely, random maps randomly sized each game. All
experiments will train for 200 000 episodes as done by the baseline
agents in the QAit task.

As time and computational constraints allowed for a few more
experiments, three additional experiments were run on random maps
with unlimited training games (instead of 500) to provide additional

evidence for a postulate inferred from the core experiments run (see
Section 7). Unlimited games entail games being generated during
training with the various values for the environment parameters
tabulated in Table 1 being randomly sampled, effectively ensuring
that each training episode sees a different game.

5.2 Evaluation
An agent’s accuracy will be measured using zero-shot evaluation on
the QAit task’s test sets and compared to the QAit baselines in the
following metrics:

5.2.1 Question Answering Accuracy. Question Answering (QA)
accuracy is the proportion of questions the agent managed to an-
swer correctly. QA accuracy is calculated the same way regardless
of question type or game configuration. The core function of QA
systems is to answer questions; thus, this metric is argued to be the
most critical indicator of the performance of a model.

Along with the QA accuracy, one could conduct other statistical
performance measures such as precision, recall or the F1 score,
allowing for detailed, in-depth explanations for what the agent is
learning to answer should the deeper analysis be required.

5.2.2 Sufficient Information Score. The sufficient information
(SI) score is a measure detailing the amount of gathered informa-
tion by the agent [49]. It allows for examining whether agents got
sufficient information to answer the question, which is an indicator
to evaluate the exploration and actions needed to answer a given
question correctly. Each of the three questions types calculate the SI
score differently to best suit the type of interactions required by the
agents to answer a question.

• Location: When the agent decides to stop interacting with
the environment and provide the answer to the question, it
will receive an SI score of 1 if the environment revealed
the answer to the question in the last observation provided
by the environment and a score of 0 otherwise. A score of
1 indicates that the agent recognises that the environment
provided enough information to answer the question.

• Existence: The SI scores for existence questions are calcu-
lated differently based on the actual answer of the question:
– Answer is yes: Similarly to location type questions, if the

answer is yes, then a score of 1 is given if the entity in
question is in the latest observation provided by the envi-
ronment; otherwise, the agent receives a score of 0.

– Answer is no: The agent will receive a score of between 0
and 1 depending on the proportion of exploration done by
the agent before answering, as more exploration is needed
to say an entity does not exist in the environment confi-
dently.

• Attribute: To evaluate an agents SI score on attribute type
questions, the QAit task developed a set of heuristics (outlined
in Table 4 in the Appendix) allowing for specific SI scores to
be assigned to different attributes.

5.2.3 Training Episodes. In order to investigate the time taken
for a model to converge in training accuracy, we can utilise the
training QA accuracy over the agent’s 200 thousand episodes and
compare it to the QAit task’s baseline agent’s training QA accuracy

Table 2: Agents’ results for the QAit task on fixed and random map games. Question Answering (QA) accuracies are shown in black,
while the Sufficient Information (SI) scores are blue. Bolded results indicate better testing QA results compared to the other agent.

Map Model
Location Existence Attribute

Train Test Train Test Train Test

500 Games

Fixed
GAT-DQN 0.320 (0.320) 0.176 (0.192) 0.706 (0.183) 0.702 (0.157) 0.674 (0.024) 0.530 (0.019)
DQN 0.430 (0.430) 0.224 (0.244) 0.742 (0.136) 0.674 (0.279) 0.700(0.015) 0.534 (0.014)

Random
GAT-DQN 0.418 (0.418) 0.226 (0.230) 0.746 (0.151) 0.702 (0.129) 0.688 (0.026) 0.476 (0.021)
DQN 0.430 (0.430) 0.204 (0.216) 0.752 (0.162) 0.678(0.214) 0.678 (0.019) 0.530 (0.017)

Unlimited Games

Random
GAT-DQN 0.318 (0.318) 0.212 (0.212) 0.726 (0.152) 0.708 (0.149) 0.552 (0.026) 0.512 (0.017)
DQN 0.316 (0.316) 0.188 (0.188) 0.728 (0.213) 0.668 (0.218) 0.812 (0.055) 0.506 (0.018)

Table 3: Scores of the best performing models on the QAit task
for each question type on each map type, across all game set-
tings. Question Answering (QA) accuracies are shown in black,
while the Sufficient Information (SI) scores are blue.

Question Type Agent Results
Fixed Map

Location Rainbow 0.280 (0.280)
Existence Rainbow 0.692 (0.157)
Attribute DQN 0.534 (0.014)

Random Map
Location Rainbow 0.258 (0.258)
Existence DDQN 0.694 (0.196)
Attribute DDQN 0.544 (0.019)

to infer how the GAT aided in the convergence of QA accuracy
during training.

6 RESULTS
6.1 Fixed Maps
As can be seen from the results in Table 2, the inclusion of the GAT
in the DQN model (GAT-DQN) in 500 fixed map games was not
able to aid the DQN agent in achieving better Question Answering
(QA) accuracy or Sufficient Information (SI) score for location and
attribute type questions. The exception to this is the SI score for
attribute types questions which performed higher than the DQN.

GAT-DQN significantly outperformed the DQN in QA accuracy
for existence type questions, increasing from 0.674 to 0.702. The
GAT-DQN was also able to achieve better results than the best
model in the QAit task for this setting. As tabulated in Table 3, the
best model for existence type questions in a fixed map game is the
Rainbow agent, which achieved a QA and SI score of 0.692 and
0.157, respectively. The GAT-DQN achieved better QA accuracy
and matched the SI score.

6.2 Random Map
6.2.1 500 Games. In the 500 random mapped games, we see
significant improvements for the location type questions for both QA
accuracy and SI score while achieving lower measures in training
for both. The GAT-DQN improved the QA accuracy from 0.204 to
0.226 and the SI score from 0.216 to 0.23, respectively. Once again,
we can see lower QA accuracies for attribute questions and a higher
SI score.

Similarly to fixed maps, we see that the QA accuracy achieved by
the GAT-DQN for existence type questions (0.702) was higher than
that of the DQN (0.678). Additionally, the GAT-DQN managed to
achieve better accuracy than QAit’s best model on random maps for
existence questions which is a DDQN agent with a QA accuracy of
0.694.

6.2.2 Unlimited Games. The results from the unlimited game
experiments (also tabulated in Table 2) indicate an improvement in
the GAT-DQN model’s ability to answer all three question types
compared to the DQN. The increase in training data variability
allowed the GAT-DQN to increase the attribute QA accuracy from
0.506 to 0.512, unlike in the 500 game setting. Furthermore, training
on unlimited games allowed for better QA accuracy for existence
type questions on random maps with an accuracy of 0.708, further
improving the best model’s accuracy and its SI score from the 500
games model.

7 DISCUSSION
Results from the fixed map experiments show that the training QA
accuracy in all three question types was lower in the GAT-DQN than
with the DQN, including existence type questions, which performed
better on the test set. Being unable to converge to the same training
accuracy yet performing better on the test set could suggest the GAT
prevented the DQN from overfitting the data or could point to greater
generalisability of the model.

Lower training scores for QA and SI can also be seen in loca-
tion and existence type questions on random maps. Despite these
lower training scores, the GAT improved both questions’ accuracy,
with location only being improved on random maps, implying that

Figure 7: Training QA accuracy using unlimited games on random maps for both the baseline DQN and the GAT-DQN over 200
thousand episodes.

an agent’s greater contextual understanding of its surroundings im-
proves generalisability. This postulate is motivated by random map
games having randomly sized games. The higher variability within
the training and testing sets are thus more challenging to solve and
require agents with higher generalising abilities than with fixed
mapped games. This relationship can be explored further by looking
at the results from the unlimited games, which have maximum vari-
ability in training data and negligible possibility of overfitting to the
training data. The results suggest that the postulate is correct as un-
limited games allowed the GAT to improve the DQN’s performance
on all three question types, which was not the case on the 500 games
setting.

We can also see that although training the GAT-DQN on unlimited
games for location type questions improved QA and SI accuracy
compared to the regular DQN, it is lower than the GAT-DQN model
trained on 500 games. However, we see a more significant increase
from the DQN baseline in unlimited games than 500 games, indi-
cating that the higher variability in the training data still resulted in
higher utility from the GAT. However, this implies that while the
GAT utility increases, it is limited by the agent utilising it as the
DQN alone does worse on all three question types when trained on
unlimited versus 500 games.

The DQN inherently performs poorly on unlimited games com-
pared to 500 games. However, the GAT bridged the gap in its short-
coming to a marginal degree, as it still could not beat its accuracy
from 500 games. This highlights that while evidence suggests that
the GAT improves QA accuracy under more generalised environ-
ment conditions, the agents’ QA accuracy is hindered by its own
abilities. The long-term context provided by the GAT improves the
QA accuracy but cannot alone solve the task.

7.1 Training Convergence
Figure 7 plots the QA accuracies for the baseline DQN agent and
the GAT-DQN for unlimited games on random maps. The complete
set of plotted training accuracies for all experiments run can be
seen in Figure 8 and Figure 9 in the Appendix. Analysing these

curves confirmed the results in Table 2, in that during the training
process, the GAT-DQN has slightly lower training QA accuracy in
most of the experiments run. In the unlimited game experiments,
where GAT-DQN outperformed the DQN in every question type,
we can also see slightly lower training QA accuracy throughout the
training process. Furthermore, we can see that both the DQN and
GAT-DQN have very similar training curves, and there is no evidence
to suggest that the GAT aided in the convergence of the model as
the training curves start to flatline in the same area for both models
across all game settings. The exception is the GAT-DQN on attribute
type questions when trained on unlimited games with random map
(Figure 7), where the training QA accuracy is significantly lower
than its counterpart. However, since it is computationally infeasible
to overfit the training data in the unlimited game setting, the GAT
could prevent the agent from learning some distribution pattern from
the environment sampling that does not yield higher accuracy in
unseen environments such as the test set.

8 CONCLUSIONS
This paper demonstrates the use of Graph Attention Networks in
aiding an RL agent’s ability to answer a question in interactive text-
based environments. Results show that while GATs do not aid in
the training convergence of the agent, they can increase the question
answering accuracy of agents in an IQA setting, provided sufficient
training data with high variability.

Better QA results stemming from greater variability in the train-
ing data indicate GATs can create more generalisable agents that
perform better to unseen environments when answering questions
on locality, existence and attributes of objects in text-based environ-
ments. However, providing additional context to the agent using a
GAT will not solve the task alone and only aid in an agent’s perfor-
mance, suggesting the GAT’s performance is limited by the agent
utilising it.

9 LIMITATIONS & FUTURE WORK
A limitation the project has is its architecture’s inability to process
edge labels from the constructed KG. Since a GAT works on a
self-attention mechanism over nodes, possible valuable information
contained in the edges of the KG (relations between entities) is not
utilised, possibly leading to worse performance. An extension to the
project could be to implement a particular version of the GAT that
includes edge-features [12], which could provide better additional
context to an agent.

Due to time and computational constraints, no experimentation
was conducted on how the GAT can aid the other RL agents in the
QAit baselines, such as the DDQN and the Rainbow agent. These
agents are QAit’s best agents for particular map and question types,
and equipping them with GATs could prove beneficial. Furthermore,
running additional experiments on fixed maps with unlimited games
could also be beneficial due to the GAT-DQN’s observed requirement
of higher training data and variability.

Additionally, one could look into using a different approach to
KG construction, which could greatly aid in the performance of the
model [3]. Instead of using Stanford’s OpenIE along with a set of
heuristic rules, one could consider a BERT model trained to con-
struct KGs from state descriptions (e.g. Q*BERT [4]). More recently,
WorldFormer [3] was developed as another transformer-based KG
constructor, which allows QA models to perform significantly bet-
ter using its constructed KG over Q*BERT’s KGs or rule-based
approaches.

10 ACKNOWLEDGEMENT
Thank you to my supervisors, Dr Buys and Dr Shock, who were
always available when in need of guidance, answering questions, or
discussing ideas. Acknowledgement also needs to go to Shane Ac-
ton, whose invaluable knowledge on Graph Neural Networks and his
availability to answer any questions on Graph Attention Networks
was greatly appreciated. My team members, Edan Toledo and Greg
Furman, also deserve thanks for their tireless group efforts on the
collaborative portion of the project and their overall willingness to
discuss ideas for the project at large. Lastly, thank you to the admin-
istrators of UCT’s High-Performance Cluster for accommodating
the rest of my project team and me when requiring greater resources
than what was available to us at home.

REFERENCES
[1] Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikuláš Zelinka, Marc-

Antoine Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and William L. Hamilton. 2021. Learning Dynamic Belief Graphs to Generalize
on Text-Based Games. arXiv:2002.09127 [cs.CL]

[2] Prithviraj Ammanabrolu and Mark O. Riedl. 2019. Playing Text-Adventure Games
with Graph-Based Deep Reinforcement Learning. arXiv:1812.01628 [cs.CL]

[3] Prithviraj Ammanabrolu and Mark O Riedl. 2021. Learning Knowledge Graph-
based World Models of Textual Environments. arXiv preprint arXiv:2106.09608
(2021).

[4] Prithviraj Ammanabrolu, Ethan Tien, Matthew Hausknecht, and Mark O. Riedl.
2020. How to Avoid Being Eaten by a Grue: Structured Exploration Strategies for
Textual Worlds. arXiv:2006.07409 [cs.AI]

[5] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D Manning.
2015. Leveraging linguistic structure for open domain information extraction. In
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 344–354.

[6] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722–735.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normal-
ization. arXiv:1607.06450 [stat.ML]

[8] Dimitri P. Bertsekas. 2005. Dynamic Programming and Optimal Control (3rd ed.).
Vol. I. Athena Scientific, Belmont, MA, USA.

[9] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data. 1247–1250.

[10] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston.
2015. Large-scale Simple Question Answering with Memory Networks.
arXiv:1506.02075 [cs.LG]

[11] Antoine Bordes, Jason Weston, and Nicolas Usunier. 2014. Open Question
Answering with Weakly Supervised Embedding Models. arXiv:1404.4326 [cs.CL]

[12] Jun Chen and Haopeng Chen. 2021. Edge-Featured Graph Attention Network.
arXiv:2101.07671 [cs.LG]

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[14] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes,
Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada,
et al. 2018. Textworld: A learning environment for text-based games. In Workshop
on Computer Games. Springer, 41–75.

[15] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes,
Emery Fine, James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler. 2019. TextWorld: A Learning
Environment for Text-based Games. arXiv:1806.11532 [cs.LG]

[16] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar,
Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. 2017. Go for a
walk and arrive at the answer: Reasoning over paths in knowledge bases using
reinforcement learning. arXiv preprint arXiv:1711.05851 (2017).

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[18] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal
Ahmed, and Li Deng. 2016. Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint arXiv:1609.00777 (2016).

[19] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2013. Paraphrase-driven
learning for open question answering. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 1608–
1618.

[20] Jonas Gehring, Michael Auli, David Grangier, and Yann N. Dauphin.
2017. A Convolutional Encoder Model for Neural Machine Translation.
arXiv:1611.02344 [cs.CL]

[21] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon,
Dieter Fox, and Ali Farhadi. 2018. Iqa: Visual question answering in interactive
environments. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 4089–4098.

[22] M. Gori, G. Monfardini, and F. Scarselli. 2005. A new model for learning in graph
domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., Vol. 2. 729–734 vol. 2. https://doi.org/10.1109/IJCNN.2005.
1555942

[23] Jian Guan, Yansen Wang, and Minlie Huang. 2018. Story Ending Generation with
Incremental Encoding and Commonsense Knowledge. arXiv:1808.10113 [cs.CL]

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.
90

[25] Simon Jegou, Michal Drozdzal, David Vázquez, Adriana Romero, and Y. Bengio.
2017. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for
Semantic Segmentation. 1175–1183. https://doi.org/10.1109/CVPRW.2017.156

[26] Dan Jurafsky. 2000. Speech & language processing. Pearson Education India.
[27] Dan Jurafsky. 2020. Speech and language processing. preprint on webpage at

https://web.stanford.edu/~jurafsky/slp3/ed3book_dec302020.pdf.
[28] Dan Jurafsky and James H Martin. 2014. Speech and language processing. Vol. 3.

US: Prentice Hall (2014).
[29] Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh Thakkar, Jens Lehmann,

and Maria Maleshkova. 2021. Conversational Question Answering over
Knowledge Graphs with Transformer and Graph Attention Networks.
arXiv:2104.01569 [cs.CL]

[30] Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Continuous Translation
Models. In Proceedings of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics, Seattle,
Washington, USA, 1700–1709. https://www.aclweb.org/anthology/D13-1176

[31] Natalia Konstantinova and Constantin Orasan. 2013. Interactive Question Answer-
ing. 149 –. https://doi.org/10.4018/978-1-4666-2169-5.ch007

[32] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,
Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A
Benchmark for Question Answering Research. Transactions of the Association
for Computational Linguistics 7 (March 2019), 452–466. https://doi.org/10.1162/
tacl_a_00276

[33] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2017. Gated
Graph Sequence Neural Networks. arXiv:1511.05493 [cs.LG]

[34] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. 2017.
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Su-
pervision. In Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Vancouver, Canada, 23–33. https://doi.org/10.18653/v1/P17-1003

[35] Percy Liang, Michael Jordan, and Dan Klein. 2011. Learning Dependency-
Based Compositional Semantics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Portland, Oregon, USA, 590–599.
https://www.aclweb.org/anthology/P11-1060

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[37] Tatiana-Andreea Petrache, Traian Rebedea, and Ştefan Trăus,an-Matu. [n.d.]. In-
teractive language learning-How to explore complex environments using natural
language? ([n. d.]).

[38] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[39] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2009. The Graph Neural Network Model. IEEE Transac-
tions on Neural Networks 20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.
2005605

[40] Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu Tang, Nan Duan, Guodong
Long, and Daxin Jiang. 2019. Multi-Task Learning for Conversational Question
Answering over a Large-Scale Knowledge Base. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Hong Kong, China, 2442–
2451. https://doi.org/10.18653/v1/D19-1248

[41] Saku Sugawara, Kentaro Inui, Satoshi Sekine, and Akiko Aizawa. 2018. What
makes reading comprehension questions easier? arXiv preprint arXiv:1808.09384
(2018).

[42] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML]

[45] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey
Hinton. 2015. Grammar as a Foreign Language (NIPS’15). MIT Press, Cambridge,
MA, USA, 9 pages.

[46] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and Tell: A Neural Image Caption Generator. arXiv:1411.4555 [cs.CV]

[47] Wen-tau Yih, Xiaodong He, and Christopher Meek. 2014. Semantic parsing for
single-relation question answering. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers). 643–648.

[48] Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Christopher Pal, Yoshua
Bengio, and Adam Trischler. 2019. Interactive language learning by question
answering. arXiv preprint arXiv:1908.10909 (2019).

[49] Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Chris Pal, Yoshua
Bengio, and Adam Trischler. 2019. Interactive Language Learning by Question
Answering. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 2796–2813. https://doi.org/10.18653/v1/D19-
1280

[50] Xingdi Yuan, Jie Fu, Marc-Alexandre Cote, Yi Tay, Christopher Pal, and Adam
Trischler. 2019. Interactive machine comprehension with information seeking
agents. arXiv preprint arXiv:1908.10449 (2019).

A APPENDIX
A.1 Sufficient Information Score Heuristics for Attribution Questions

Table 4: Heuristic conditions for determining whether the agent has enough information to answer a given attribute question. We use
“object” to refer to the object mentioned in the question. Words in italics represent placeholders that can be replaced by any object
from the environment that has the appropriate attribute (e.g. carrot could be used as a cuttable). Pass and Fail columns represent
how much reward the agent will receive given the corresponding command’s outcome (resp. success or failure). [49]

Attribute Command State Pass Fail Explanation

sharp cut cuttable
holding (cuttable)
& uncut (cuttable)
& holding (object)

1 1
Trying to cut something cuttable
that hasn’t been cut yet
while holding the object.

take object reachable(object) 0 1 Sharp objects should be portable.

cuttable cut object
holding (object)
& holding (sharp) 1 1

Trying to cut the object while holding
something sharp.

take object reachable (object) 0 1 Cuttable object should be portable.

edible eat object holding (object) 1 1 Trying to eat the object.

take object reachable (object) 0 1 Edible objects should be portable.

drinkable drink object holding (object) 1 1 Trying to drink the object.

take object reachable (object) 0 1 Drinkable objects should be portable.

holder
- on (portable, object) 1 0 Observing object(s) on a supporter.

in (portable, object) 1 0 Observing object(s) inside a container.

take object reachable (object) 1 0 Holder objects should not be portable.

portable - holding (object) 1 0 Holding the object means it is portable.

take object reachable (object) 1 1 Portable objects can be taken.

heat_source cook cookable
holding (cookable)
& uncooked (cookable)
& reachable (object)

1 1
Trying to cook something cookable
that hasn’t been cooked yet
while being next to the object.

take object reachable (object) 1 0 Heat source objects should not be portable.

cookable cook object
holding (object)
& reachable (heat_source) 1 1

Trying to cook the object
while being next to a heat source.

take object reachable(object) 0 1 Cookable objects should be portable.

openable open object
reachable (object)
& closed (object) 1 1 Trying to open the closed object.

close object
reachable (object)
& open (object) 1 1 Trying to close the open object.

A.2 Training Accuracy on Fixed Maps

Figure 8: Training QA accuracy on fixed maps for both the baseline DQN and the GAT-DQN over 200 thousand episodes.

A.3 Training Accuracy on Random Maps

Figure 9: Training QA accuracy on random maps for both the baseline DQN and the GAT-DQN over 200 thousand episodes.

