
Comparing Data Flow Platforms for Astronomy Visualisation
Georgeo Thanathara
THNGEO002@myuct.ac.za
University of Cape Town

ABSTRACT
The need for remote astronomy visualisation is becoming more
demanding as time passes. As infrastructure improves and contin-
ues to exceed expectations, there is a need for a system that can
accurately analyse and render the images produced from the array
telescopes. With the implementation of remote visualisation tools
such as CARTA, the power of the multithreaded C++ backend is
ever present.

However, as the data cubes increase in the magnitude of size,
there is a need for new backend technologies that will be able to
return data efficiently and promptly to the front end. This paper
focuses on one technology known as dataflow models, a paradigm
that makes use of Directed Acyclic Graphs where the nodes are
represented as functions and the inputs are treated as dependencies.

The following paper will investigate a C++ Dataflow library
known as Raftlib and will explain how the library can be imple-
mented for a few basic features like Region Statistics, Channel
Histograms, and Cube Histograms through the use of custom ker-
nels and operator overloads to link them and produce executable
graphs. This prototype has been subjected to thorough testing and
the efficacy of the library as well as it’s performance has been
compared against CARTA.

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures; Parallel architectures.

KEYWORDS
dataflow, astronomical data processing, RaftLib, CARTA, paral-
lelism

1 INTRODUCTION
The ever-growing scale and the nature of high-resolution astro-
nomical imagery that is produced by the many telescope arrays
requires a need to be analysed and rendered through remote access.
In particular, radio astronomers are able to create sharper, brighter,
and higher resolution images using a radio telescope interferome-
ter. This is because in contrast to a single antenna image, two or
more image measurements are connected electronically by point-
ing the antennas in the same direction. The interferometer allows
the combination of measurements simultaneously from a pair of
antennas in an array resulting in high resolution measurements of
a focal point [14]. As expected, these interferometric observations
produce enormous cube sizes resulting in larger image file sizes.
As the industry and technology continues to evolve, the standard is
getting set and such cube sizes are becoming more common, espe-
cially since cube sizes increase linearly depending on the number
of channels for line or polarisation observations [23].

With the planned production of the Square Kilometer array
(SKA) underway, it is set to be the worlds largest radio telescope
and will be more powerful and faster when it comes to mapping
the sky. It is expected that the SKA will be able to discover pulsars
of steller-size and super black holes which can be used to test a
number of theories on gravity. Perkins et al [17] describes a number
of concerns relating to visualising such images from the SKA; what
is distinct to this project is the mention of the sheer size of the data
files due to the above mentioned interferometric observations. It
can almost be guaranteed that the file sizes could increase in size
to terabytes.

As the cube sizes get larger due to the higher resolution measure-
ments, the existing visualisation tools such as CASA-viewer [15]
notices a significant increase in processing times and a reduction
in efficiency. This casts a negative shadow on user experience as it
is impractical to be waiting for minutes in order to perform quick
tasks such as region histograms, cube histograms or even region
statistics. An efficient and scalable solution that was built is known
as CARTA [23], a Cube Analysis and Rendering Tool for Astronomy,
which provides a solution for visualising large image cubes. The
tool supports images produced from the Atacama Large Millimetre
Array (ALMA) [24], MeerKat (alternatively known as the Karoo
Array telescope) [7], and soon to work with the upcoming Square
Kilometre Array (SKA) [8] datasets. The images used can be in
CASA, FITS, MIRIAD or a unqiue HDF5 IDIA scheme [21].

The HDF5 IDIA Scheme provides useful pre-computed data, such
as histograms and statistics, which are usually I/O Intensive calcu-
lations. On the other hand, Flexible Image Transport System files
(FITS) do not provide such extensive data within the file. However,
FITS files have been in use since the early 1970s but are now con-
sidered to be the de facto of astronomy visualisation ever since the
release of better formats like the HDF5 [18]. There are a number of
tools to convert FITS files to HDF5 such as fits2hdf which creates a
HDFITS files which ports data models to HDF5. CARTA also has
its own converter that is used to transform it into the HDF5 IDIA
Scheme. It is not always possible for a client to convert a file before
they make use of it on the user interface, thus CARTA allows for
FITS files to be uploaded which results in slower response times
from the backend due to having to perform calculations that would
be usually be available in an HDF5 file.

CARTA is currently written in an imperative multi-threaded
C++ backend [10, 20]. While this solution provides great results
and processing times, it is necessary to look into different possi-
ble implementations which could prepare for larger image sizes
in the future produced from telescopes such as the SKA. This pa-
per propose a dataflow model and asses their suitability on being
used in the CARTA backend to perform certain tasks. Dataflow
architectures make use of Directed Acyclic Graphs(DAG), this is a
mechanism that allows functions to be represented as nodes, and
the arguments to the functions(dependencies) are treated as the



G. Thanathara

inputs to the nodes. A firing set, as described by Johnston et al [13]
is whenever a node has data on its input arc. The node is executed
and the result is placed on the output arc. The node then stops its
execution and waits for it to receive data on its input arcs again.
This is what makes the dataflow architecture unique, as it allows
for multiple instructions to be executed in parallel once they have
their dependencies ready.

Given the above mentioned caveat and limitations, this research
project attempts to answer the following research question

RQ: Is there a suitable framework for implementing
the data-flow model for radio astronomy image data
processing, and is it scalable and efficient enough to
be able to handle the astronomical data sizes that the
future will bring?

To overcome this problem, this paper will focus on the imple-
mentation of a C++ dataflow library known as RaftLib [6].The
remainder of this paper will present some related work followed
with the explanation and implementation of the RaftLib library on
a few basic features that are computationally expensive, such as
the ones that are lacking in FITS files. The suitability of the library
will be evaluated and discussed by comparing the results against
the CARTA backend by testing on the ilifu [12] clusters.

2 BACKGROUND AND RELATEDWORK
2.1 Stream Processing and Raftlib
In contrast to batch processing, stream processing is a compute
paradigm that has been around for a while. Modern applications
that use as IoT devices and real-time processing are implementing
stream processing as it allows for immediate execution of tasks
as soon as the data arrives. Raftlib exploits the stream processing
and allows a user to create and write sequential code in kernels,
this allows the compartmentalisation of state within each compute
kernel, which is one of its core features [1]. As described by Beard
et al [6] there are a number of advantages in stream processing, for
instance the ability to separate the program into logical partitions
and thus allowing the programmer to think sequentially about the
independent pieces whilst allowing the entire program to execute
in parallel.

Three of the main optimization techniques that Raftlib provides
are Dynamic Queue Optimization, Automatic Parallelisation, and
Real-Time Low Overhead Performance Monitoring. The library is
created such that it can eliminate bottlenecks in resource allocation
by dynamically monitoring the system. This allows the program-
mer to rather focus on application logic. Raftlib is considered as
an auto-tuned streaming system, this means that it can mitigate
communication costs, adaptively schedule compute kernels, and
provide low overhead instrumentation during run time. Common
issues such as data races in traditional parallel code are not possible
in RaftLib. Ports are also safe when accessing data from methods
within the library’s run method. Additionally, most streaming ap-
plications make use of different optimization techniques depending
on the input, RaftLib works similarly but allows the user to specify
submaps known as “synonymous kernel groupings” which swap
out to optimize the computation during runtime.

2.2 Simplifying Parallelisation using Raftlib
The Raftlib github page [5] provides a variety of examples that
can be used to understand how the library works. One tutorial in
particular which relates to this research is a concise post that was
written to compare the parallel data compression with PBZIP2 [11]
against a Raftlib implementation of this [4]. The post went on to
benchmark the compression speed of 10 gigabytes of data and it
was clear that the Raftlib implementation was able to yield better
results and proved to be slightly faster given the conditions that
it was tested in. Although not the same, this tutorial showed the
methodology of parallelisation using the library, this was used as a
foundation in building custom kernels for this research explained
hereunder.

2.3 DASK Implementation
Fouche et al [10] implemented a set of back-end components that
mimic the behaviour of the CARTA backend using DASK. This
was done to compare and test the efficiency and efficacy of the
dataflow model and compare it to the C++ multithreaded back-
end of CARTA. The region histogram computation and the region
statistic computation functions were chosen and were tested when
data was on both disk and memory. The test results showed that
the DASK implementation significantly outperformed the CARTA
when performing computations on data that is on the disk. The
implementation on a distributed scheduler was almost always faster
than the local scheduler. This is reasoned by mentioning that the
distributed scheduler can aggregate an arbitrary number of worker
nodes given some conditions, whereas the local implementation
and CARTA are strictly bound to the number of cores available.
We also learn that latency can cause network server issues which
result in slower responses.

3 DESIGN AND IMPLEMENTATION
3.1 Architecture
It was decided that the implementation of this project would try
replicate the CARTA client-server architecture wherever possible.
This paper deemed it reasonable to create a simple frontend in
python that shared ideas from Fouche [10] which made use of
terminal inputs. This was motivated because the primary focus of
this project is the backend and thus it is not required to create an
actual website for the frontend. However, during the testing phase
we anticipate results from the current existing CARTA backend
through our frontend as to ensure that benchmarking is made as fair
as possible. Simply timing the CARTA frontend and getting results
from there is not a fair comparsion. It is also further motivated as
this experiment aims to perform the testing on the ilifu clusters as
to compare these results against CARTA on the same hardware.

The CARTA Interface Control Document [2] (ICD) and the log
events from the CARTA website was studied extensively to under-
stand how exactly the custom protocol buffers were used in order
to exchange messages and acknowledgements. The connection will
be established using the TCP protocol and the communication will
take place through a websockets protocol. This protocol will allow
for reliable, error checked and ordered transmission of data. An



Comparing Data Flow Platforms for Astronomy Visualisation

Figure 1: Packagediagram.

Figure 2: Class Diagram.

instance will be created when a user loads the web page and com-
munication will take place through a shared repository of protocol
buffer references. The ICD defines the protocol definitions that can
be used in order to set up and establish a connection.

Figure 3 shows the sequence diagram when a connection is
established between a CARTA client and server. Our python client
has been made to closely mimic this behaviour. The RaftlibServer
will be running and when the client connects to the backend, the
server sends a response requesting the client to identify itself. The
client will use a register viewer protocol in order to establish a

Figure 3: CARTA Connection set up using protocol buffers.

connection using a unique session ID. If the session is valid then
the server creates an instance of the Session class which will be
used to handle all requests for a particular client in a session.

The CARTA interface allows the client to see information about
a file before opening it, this allows the user to see information such
as the number of headers in the file. For simplicity, this project only
focused on the primary HDU of all files which is the default when
no HDU is specified. Once the register viewer is acknowledged by
the server, the client is then prompted to open a file, figure 4 shows
the protocol when the user does this. First the client will send an
open file request to the server, for the scope of this project the
image file will already be on the server end thus the user only has
to specify the relative directory and file name. If the file is found
on the server side, an open file acknowledgment protocol is used.
This will include details for the FileInfo and FileInfoExtended sub-
messages. Though this part is not actually reading the image data,
it is still required to open the file using the cfitsio [16] library. The
Session class creates an instance of FitsReader which is used to get
relevant information from the file. Immediately after the open file
acknowledgment is sent, CARTA computes the channel histogram
data and sends it through, the functionalitiy of the Raftlib library is
exploited here by creating separate kernels for the different features.

Three main features from the CARTA backend was implemented
using Raftlib. The region statistics gathers the sum, mean, total
pixels, standard deviation, min and max. The channel histogram
gathers the number of bins, bin width, first bin center and the
actual bins. The cube histogram gathers the same results as the
channel histogram but for the entire cube. The calculations will
happen on the entire image region to ensure that the largest possible
calculations are performed.

3.2 Features
3.3 Region Statistics
The region statistics calculation makes use of four custom raft
kernels that extends the base raft::kernel class, namely RaftReadIm-
age, SplitVector, RaftStatistics and Sum. Figure 5 shows the Directed



G. Thanathara

Figure 4: CARTA Opening a file using protocol buffers.

Figure 5: Statistics Directed Acyclic Graph.

Acyclic Graph of the kernels in execution. The RaftReadImage is
responsible for sequentially reading a row at a time using the cfitsio
library. Memory is allocated for a row using ’NAXIS2’ value that
is provided in the HDU. Once the row has been read, there is a
check to eliminate any -nan pixels from the vector that is released
down the stream. This is done to calculate the mean and standard
deviation accurately using all non nan pixels. The SplitVector kernel
is responsible for streaming a number of rows to its subsequent ker-
nels. This kernel is created by making use of the pop_range method
provided by Raftlib which will pop a specified number of rows from
the FIFO buffer into a std::vector. The motivation behind imple-
menting as such is to give the user the ability to stream multiple
rows together to the next kernel as opposed to just one. If memory
is not a concern then a user may increase the NUM_VECTORS
variable allowing more data to be streamed at a time through a
port.

The constructor of SplitVector takes in a parameter that is respon-
sible for its number of output ports. When the split operator (<=) is
used it will map each output port of SplitVector into the duplicates
of the RaftStatistics kernels, which are created during runtime. This
is how Raftlib allows for explicit parallelisation by linking a number
of kernels together as a single pipeline stage within a streaming
graph [5]. The only rule when it comes to parallelising kernels is to
ensure that state should only be accessed from within a kernel or
streamed in via ports. The RaftStatistics kernel is where the actual
statistics computations take place, this kernel is duplicated as many

times as there is output ports for SplitVector, a copy constructor
is required so that the Raftlib CLONE() macro can duplicate the
object. This kernel will calculate the sum and sumsquare for the
data vector that has been streamed in through its input port, it will
also calculate the minimum and maximum values by comparing
it to a local copy for each duplicated kernel. These four values is
added to a vector and is passed through the output port into the
input port of kernel Sum.

The Sum Kernel is the final kernel in the RaftStatistics calcu-
lation. The same number of input ports as output ports specified
for SplitVector is set during construction of the kernel, this is the
final step to ensure that the middle kernel is duplicated and all
its outputs are linked to the kernel using the join operator (>=).
This run method of the sum kernel loops through its input ports
and makes use of the size() method to check whether there is any
data in the receiving port. What this kernel does is add the sum
and sumsquare to its constructed global variables which can be
accessed once the graph is finished execution in order to perform
calculations such as mean and standard deviation. The Raftlib class
makes use of the operator overloads to link the kernels together
and execute the graph. The linking is as follows: RaftReadImage »
SplitVector <= RaftStatistics >= Sum.

3.4 Channel Histogram

Figure 6: Histogram Directed Acyclic Graph.

The channel histogram calculations also make use of four custom
raft kernels that extends the base raft::kernel class. Since we want
to eliminate the need to store the entire data in memory, the same
RaftReadImage and SplitVector kernels from the the region Statis-
tics is used in order to re-read the data from the file and stream the
rows through the ports. The difference is in the RaftHistogram and
MergeBins kernels. Similar to the Statistics, RaftHistoram is dupli-
cated the number of times that there is output ports for SplitVector.
Prior to creating an object of this class, we first calculate the number
of bins using the dimensions of the image to ensure that histogram
is calculated for the entire region. The bin width is calculated using
the minimum and maximum values computed from the statistics. A
bins vector is also initialised with a size of the number of bins and
will be passed into the constructor of MergeBins. The histogram
constructor takes in the mean, minimum, bin width and the number
of bins. Since this kernel is cloned, the copy constructor will create
a local histogram for each duplicate kernel. The data vector that
is streamed in will be looped and the bin position for each pixel
is incremented in the local bins. This vector is then streamed into



Comparing Data Flow Platforms for Astronomy Visualisation

the final kernel MergeBins. The local bins copy of each duplicate
kernel is then reset back to zero.

MergeBins is similar to the sum kernel in the sense that it will be
used in conjunction with the join operator; meaning that there is as
many input ports as there is duplicates of the middle kernel. This
kernel has a reference to the main bins vector that was passed in
through the constructor. During execution, as the kernel receives
inputs through its ports it will add the bin values from the vectors
to the main referenced bin vector. Once again, the linking of the ker-
nels happens in the CalculateHistogram method of the Raftlib class
and the map is executed. The linking is as follows RaftReadImage «
SplitVector <= RaftHistogram >= MergeBins.

3.5 Cube Histogram
The cube histogram is the same as the channel histogram calculation
but will be for the entire cube. The existing code and the above
mentioned kernels for channel histogram is compatible to calculate
this. This is because the code was designed to work with either 2D
or 3D imagery. The current implementation reads the header of a
FITS file and checks for a depth value, if it is not found then the
depth is set to 1, meaning that it is a 2D image. This is otherwise set
to the depth value, which is beneficial because in the RaftReadImage
kernel, we loop through the depth followed by the rows, then send
each row down the stream. This means that the channel histogram
and the cube histogram can be calculated in the same manner. We
are currently parallelising the calculations in each channel, one
suggested method was to do this and also to parallelise the reading
of each channel. This would mean we would result in a graph that
looks like ReadEachChannel <= SplitVector <= RaftHistogram >=
MergeBin. This means that SplitVector and RaftStatistics would be
duplicated a number of times and each output of SplitVector would
go to its corresponding Histogram Kernel and the final outputs
would be merged in MergeBins. However, it was found that Raftlib
currently doesn’t explicitly support this feature. This is because
the map execution is processed from left to right and since the
ReadEachChannel <= SplitVector returns a type kpair, there is no
operator overload for the split operation that supports the first
argument to be of type kpair.

3.6 Parallel Reading
The parallel reading is an extension to the original features in the
scope. Currently one of the main bottlenecks of the CARTA system
is the sequential reading of data from the files. When it comes to
scenarios such as cube histogram, it will take extremely long to
process certain file sizes since the data wont be in memory. More
about this is explained in the following section. Since it is beneficial
for us to try implement the parallel reading in Raftlib, a simple
but not yet complete implementation of this feature is currently in
the developmental branch of the project folder. Figure 7 shows the
Directed Acyclic Graph of parallel reading and the region histogram
calculation for this code. In the cube histogram we spoke about the
inability of Raftlib to perform a double split operations together, to
circumvent this issue two graphs were combined together using the
end and start kernels of each respectively. A kernel RaftReadingRow
was created and is used to stream a number range through its
multiple output ports. The kernel receives the number of rows in

Figure 7: Parallel Reading + Histogram Directed Acyclic
Graph.

the image and the number of output ports through its constructor.
Before the streaming begins, a range calculation is performed using
the number of rows and output ports. Each port will receive a start
and end number which will be used by RaftReadImage to read the
slice of data from the file. The RaftReadImage kernel is only slightly
modified because now it requires a copy constructor and the clone
macro since this kernel is duplicated. The SplitVector is slightly
modified as it now has to construct multiple input ports and receive
the data in parallel as opposed to sequentially receiving the data.
Previously, Splitvector would loop through the outputs and if there
is data on the input port then it will send data through, the new
version does the same but performs a mod calculation to ensure
that data from all input ports have been read. This is done to ensure
that the graph is continuously streaming instead of waiting for all
the inputs and then looping through the outputs and sending them.

4 TESTING AND EVALUATION
4.1 Testing Environment
The initial project scope was to test the application on multiple
nodes on the ilifu cloud computing system for data intensive re-
search [12]. However, the creator of the library had previously
stated that the distributed computing code for Raftlib is currently
not open sourced, but the implementation uses a very basic TCP
stack that runs a process on each node that it is required to run
on. It is possible that a future version of this library will support
distributed computing. Thus both CARTA and the implementation
of Raftlib was tested on a single node on the ilifu system using a
Linux Ubuntu 20.04.3 LTS virtual machine. The virtual machine
has 8 cores, 64GB RAM and runs on the intel xeon 85 processor.
Even though we were allocated a few distributed disks to store the
data, the performance for all I/O operations should be similar but
one should expect some slight fluctuations.

4.2 Testing Features
If the reasoning for not loading the entire image into memory
was not motivated well previously it is important to know why
CARTA prefers this. Usually clusters can hold large chunks of data



G. Thanathara

in memory for long periods of time, however this is usually the case
when multiple clients are working on a single data source. CARTA
aims to allow multiple clients to work with multiple data, and is
also designed to run on a single user laptop or a data center thus
loading entire images into memory for every client would not be a
practical solution.

Region Statistics, Channel Histogram, and Cube Histogram were
the three main features that were tested on the virtual machine,
Figures 5, 6 shows the Directed Acyclic Graphs for the features
when in execution. Only the image from the primary HDU is tested
for every file. These features were tested on the entire region as
this will be the most computations that can happen at any point
in time. The number of bins is also set to the default value that
CARTA uses which is: √

𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡

This is also the same default for a cube histogram where only the
width and height are used in calculating the number of bins.

4.3 Testing For Efficacy
The efficacy test is done in order to ensure that the results the
program outputs will be correct and valid at all times. This is done
using unit tests in the application specifically the Google C++ test
framework [19] was used. We used four different FITS files for
the unit tests, two files were provided by the supervisors and the
other two were created using the Gaussian noise FITS image gen-
erator [9]. The actual results for each file was gathered using the
CARTA interface by enabling the log events and opening the file.
The statistics and histogram values were copied into the unit test
file. An additional bins text file for each tested file was also created
to compare the individual values of the histogram. The actual code
base was modularised such that an instance of FitsReader can be
created independently and the protocol buffers containing the pro-
gram results can be called separately. The results was compared
against each other using a 0.01% margin of error to account for
floating point arithmetic inconsistencies. The testing files tried to
cover majority of the possible data, there was a small 2D file, a cube
file containing random nans, a medium 2D file and an extremely
large 10GB file. The 10GB file was tested to ensure that there were
no loose 32bit variables which would have affected the results of a
50000x50000 image as opposed to a 45000x45000 image.

4.4 Testing for Efficiency
Testing for efficiency is an important test to confirm whether the
Raftlib library is worth implementing to replace certain features
in the CARTA backend. To conduct this experiment as fairly as
possible, there are a number of conditions and scenarios that have
to be understood. It was decided for this project that the region
statistics, channel histogram and cube histogram will be tested.
Unfortunately the extended feature "parallel read" will not be tested
due to its current concurrency issue that is yet to be solved. The
Raftlib system works as follows: when a user sends an open file
request the region statistics is calculated first. Immediately after this,
the region histogram calculation is performed, both these method
will read the entire image from the disk. The results for both these
computations are stored in protocol buffers on the FitsReader object.

As shown in figure 4 the histogram is sent immediately after the
open file response. The region statistics data is only sent through
when there is a SET_STATS_REQUIREMENT request, since the
statistics values are already computed, the time here is irrelevant.
The Raftlib cube histogram calculation works exactly the same way
as it makes use of the same methods.

CARTA was installed on the ilifu cluster and the backend was
connected to our frontend python client. The CARTA server was
initiated using the command carta –verbosity 5 –log_performance
to enable performance debug logs. The CARTA system works as
follows: for a 2D image, CARTA will read an entire channel slice
into memory from the disk. The basic stats is calculated using the
channel cache, the minimum and maximum values will be used to
calculate the histogram by looping through the cached memory
again. The open file acknowledgement and region histogram data
is sent to the front end. The performance logs here will display the
time is takes to load the image to cache and the time it takes to com-
pute the region histogram data. The user will then select the region
statistics option which will send a SET_STATS_REQUIREMENT re-
quest. The Casacore [22] library is then used by CARTA to compute
statistics data. It is important to note that Casacore will read the
entire file again from disk in order to compute the region statistics
data. However, since the image was already read from the disk re-
cently it will be much faster than reading for the first time. The time
it takes to compute this will also be displayed. The region statistics
that Casacore computes will contain a handful of excess values that
are not calculated in Raftlib. The cube histogram is only calculated
when the SET_HISTO_REQUIREMENT has a region id of -2. The
CARTA backend will then calculate histogram over the entire cube
by reading each channel from disk. The Raftlib histogram time will
have to be multiplied by two because CARTA goes through data
twice, firstly to calculate the minimum and maximum values and
then the histogram data.

Since the Raftlib implementation does not make use of an initial
basic stats compute, a fair comparison would be to run the program
twice with the same file and compare the region statistics time of
Raftlib against the Casacore statistics time. This will ensure that
both programs are exploiting the disk cache because the data was
already read once from disk. The channel histogram computation
will always be using data from memory in CARTA, the read time
for the Raftlib implementation will not be used in the comparison
to ensure that the histogram comparison is fair. Finally, for Cube
Histogram, it was noticed that the virtual machine was producing
unusual behaviours when reading data from the disk. The other
comparisons are not affected by this because they were exploiting
the disk and memory cache. A disk ram was thus created and the
files were loaded from here. Every file was tested by clearing the
file system cache, creating a file (this ensured that the disk cache
will be exploited by Raftlib in the first run), test Raftlib and finally
test CARTA. Files with image pixels ranging from 25 megapixels to
3600 megapixels were tested. All recorded time is in seconds.

5 RESULTS AND DISCUSSION
5.1 Statistics Histogram
Figure 8 tabulates the Raftlib total time, sequential read time, statis-
tics compute time and the CARTA casacore statistics time. Figure 9



Comparing Data Flow Platforms for Astronomy Visualisation

Figure 8: CARTA v Raftlib Statistics Table.

Figure 9: CARTA v Raftlib Statistics Graph.

is the graph showing the region statistics calculation using Raftlib
versus CARTA. The graph shows that the Raftlib computation of
statistics performs slightly better than the casacore implementation.
It is evident that for greater file sizes, the Raftlib implementation
increases linearly but still performs better than CARTA. One prob-
able cause for this is because cassacore statistics was written for
a more general approach where statistics calculations would be
needed for any part of the image. Another reason could be that
because only a row is streamed at a time, the actual computation is
very quick, meaning that the streaming is not halted at any point
because of filling up the buffer size. This can perhaps be considered
as a positive outcome and can provide as foundation for CARTA
to replace the casacore library to perform simple calculations by
exploiting the streaming advantages.

5.2 Channel Histogram
Figure 10 tabulates the Raftlib total time, sequential read time, chan-
nel histogram compute time and the CARTA channel histogram
time. Figure 11 is the graph showing the channel histogram using
Raftlib versus CARTA. Both, the graph and the tables shows that
Raftlib histogram was slower than the CARTA histogram. As ex-
plained in section 3.4, each duplicate kernel will calculate its own
histogram when data is streamed through its port. The slower time
could be a result of resetting the local histogram back to 0s in the
duplicate kernels. Additionally, the mergeBins kernel loops through
each histogram that is streamed in, while adding the values to the

Figure 10: CARTA v Raftlib Histogram Table.

Figure 11: CARTA v Raftlib Histogram Graph.

respective indexes of the global histogram vector. A different ap-
proach could be implemented and tested to see whether this would
make a difference. It is also possible to increase the number of rows
which are streamed in at a time. This will reduce the number of
histograms that will have to be computed and streamed, keeping in
mind the overhead to perform the same computations on a bigger
vector.

5.3 Cube Histogram

Figure 12: CARTA v Raftlib Cube Histogram Table.

Figure 12 tabulates the Raftlib total time, sequential read time,
cube histogram compute time and the CARTA cube histogram time.
Figure 13 is the graph showing the cube histogram using Raftlib



G. Thanathara

Figure 13: CARTA v Raftlib Cube Histogram Graph.

versus CARTA. The read times shown for both CARTA and Raftlib
are the read times of the files from a ramdisk. CARTA goes through
the entire data twice to calculate cube histogram. Raftlib also does
this but calculates the entire statistics in the first run. Thus the read
time for the histogram was multiplied by two for the Raftlib time
to achieve the most fair comparison. This is not the most exact
comparison, but it is assumed that the reading of the histogram
twice is equivalent to multiplying one iteration by two. At the
time of writing this paper, it is unknown whether the CARTA
implementation optimises cube histogram calculationwhen reading
the data twice. Similar to the channel histogram, CARTA seems to
perform much better than the Raftlib implementation, this can be
due to the same reasons. However, as the files sizes get larger, it
can be seen that Raftlib starts to perform slightly better. It may be
beneficial to set up a more fair comparison and test for extremely
large file sizes. It is also important to note that the depth remained
as a constant value of 250 while the channel size was increased for
each tested file.

5.4 Final Discussion and Future Work
It can be seen from the above results and discussion that the current
CARTA system outperformed the Raftlib implementation for both
channel and cube histogram data. The region statistics performed
better using the Raftlib implementation. Overall, this paper is con-
fident that a fair experiment was conducted given the conditions
in which it was tested in. However, the potential bottlenecks that
were mentioned could be revised to possibly yield better results.
Currently a row is being read at a time from the FITS file, each
row has to be copied into a vector which will be passed down the
stream. This computation itself is contributing to majority of time
consumption during reading. One important observation is the se-
quential reading time from the first kernel. This is one of the main
bottlenecks that causes a reduction in computation speed. As men-
tioned previously, the parallel read could be fully implemented in a
future version of this program. It is almost guaranteed that success-
fully implementing this would result in faster execution times in a
streaming graph. We can also find an optimal NUM_VECTOR value
using the file size to move more data down the stream at a time.
Another option would be to read bigger chunks of data from the file
at a time or even entire channels for cube histogram calculations.
The initial project scope hoped to test the library on multiple nodes,

however it was found that the library currently doesn’t support
prime time distributed computing, this could also be an extension
of this project when the library allows this feature. Nevertheless,
one could still use the Message Parsing Interface (MPI) [3] to allow
execution on multiple nodes.

6 CONCLUSIONS
We implemented a set of logically simple backend features that
CARTA uses using the Raftlib library in c++. The prototype that
was developed made use of the same protocol buffer messages that
is used by the CARTA application. By doing so, we were able to set
up a fair comparison to measure the correctness and performance
of both implementation since they were both compatible with our
frontend.

The Raftlib library allowed the implementations of the features
using the dataflow architecture through stream processing. Al-
though the results do not point highly in favour of the library, the
CARTA region statistcs computation currently makes use of the
casacore library, and we saw that the Raftlib implementation per-
formed better than this. It can be concluded that it would be worth
re-implementing this feature using Raftlib along with any other
features that may be computationally inexpensive but needs a good
portion of the image data.

The region histogram results did not show to be better than its
CARTA equivalent. This can be due to the implementation strategy
that was explained above.We can conclude that a different approach
such as streaming more than a single row could be a more efficient
solution. It is also seen that the performance of Raftlib becomes
more of a constant as the file sizes increase for cube histogram
while CARTA continuous to increase linearly. It could be possible
that the streaming application performs better for extremely large
file sizes.

One feature that is mentioned throughout the paper is the paral-
lelisation of the reading of the FITS file. This feature was tackled
as an extension to this research to see whether there would be an
increase in performance. It would certainly be beneficial to com-
plete the implementation of this and test the hypothesis. Currently,
the lack of assistance, documentation, and examples is a limiting
factor in creating a functioning code. It can be viewed in the devel-
opmental branch of the project repository.

There is a slight learning curve when it comes to understanding
how the library works. Even though major components of the
library is completed, it is still being developed and features such
as multi node execution or certain split overloads are not available.
There is no official documentation on the library other than the
wiki that is provided in the Raftlib github. However, the wiki does
provide some detailed explanations of the different methods that
the input or output ports can use. One potent advantage of Raftlib
that has been observed is that it gives the user the ability to write
code within a kernel without having to take into account low level
details of resources mapping or allocation. The linking operators
also allow the user to not worry about how the data is processed
and where certain locks need to be placed. Once the data from the
input ports were captured, the algorithm implementation could
be thought of as a sequential application. The map object allows



Comparing Data Flow Platforms for Astronomy Visualisation

the runtime to choose whether to execute the kernels in separate
processes, threads, thread pools, or fibers.

Given the above, it can be concluded that a dataflow architecture
is indeed feasible to replace certain features in the CARTA backend.
The simplicity of the Raftlib interface allows the programmer to
think in a sequential manner whilst still implementing parallel pro-
gramming. This makes the implementation of kernels simpler. Thus,
to simply answer the research question, a dataflow architecture,
specifically this library can be used to replace specific features in
the CARTA backend to increase performance.

The entire system that was developed for this project can be
viewed on the GitHub page1. The unit test files can be requested
from the author since they cannot be uploaded due to the file size.

ACKNOWLEDGMENTS
The author acknowledges that this work made use of the CARTA
(Cube Analysis and Rendering Tool for Astronomy) software.

The author acknowledges that this work made use of RaftLib:
A C++ Template Library for High Performance Stream Parallel
Processing.

The author acknowledges the use of the ilifu cloud computing
facility – www.ilifu.ac.za, a partnership between the University of
Cape Town, the University of the Western Cape, the University
of Stellenbosch, Sol Plaatje University, the Cape Peninsula Uni-
versity of Technology and the South African Radio Astronomy
Observatory. The Ilifu facility is supported by contributions from
the Inter-University Institute for Data Intensive Astronomy (IDIA
– a partnership between the University of Cape Town, the Univer-
sity of Pretoria, the University of the Western Cape and the South
African Radio astronomy Observatory), the Computational Biology
division at UCT and the Data Intensive Research Initiative of South
Africa (DIRISA).

The author acknowledges and would like to thank the three
supervisors, Professor Rob Simmonds, Dr. Angus Cormie, and Ms
Adrianna Pińska for showing great interest and providing support
and help throughout the duration of the entire project.

The author would like to thank and acknowledge Angus Pearce
(who is doing the complement of this project using a dataflow
library known as Daliuge) for the collaboratory work done for
components of this research.

The author would like to acknowledge Dylan Fouche for the
previous work provided that made use of the DASK library and
comparing it against CARTA.

REFERENCES
[1] William B Ackerman. 1979. Data flow languages. In 1979 International Workshop

on Managing Requirements Knowledge (MARK). IEEE, 1087–1095.
[2] Adrianna Pinska Angus Comrie, Rob Simmonds. 2020. CARTA Interface Control

Document. (2020). https://carta-protobuf.readthedocs.io/en/latest/index.html
[3] Brandon Barker. 2015. Message passing interface (mpi). In Workshop: High

Performance Computing on Stampede, Vol. 262.
[4] Jonathan Beard. 2017. Simplifying parallel applications for C++, an example

parallel Bzip2 using RaftLib with performance... https://medium.com/cat-dev-
urandom/simplifying-parallel-applications-for-c-an-example-parallel-bzip2-
using-raftlib-with-performance-f69cc8f7f962

[5] Jonathan Beard. Cloned:08-2021. Raftlib/Raftlib: The RAFTLIB C++ library,
streaming/dataflow concurrency via C++ iostream-like operators. https://github.
com/RaftLib/RaftLib

1The system, documentation and ReadMe can be found on https://github.com/
anguspearce/CompDaF.

[6] Jonathan C Beard, Peng Li, and Roger D Chamberlain. 2017. Raftlib: A C++ tem-
plate library for high performance stream parallel processing. The International
Journal of High Performance Computing Applications 31, 5 (2017), 391–404.

[7] RS Booth and JL Jonas. 2012. An overview of the MeerKAT project. African Skies
16 (2012), 101.

[8] David B Davidson. 2014. The SKA and the MeerKAT precursor—Extreme antenna
engineering. In The 8th European Conference on Antennas and Propagation (EuCAP
2014). IEEE, 1216–1219.

[9] Inter-University Institute for Data Intensive Astronomy (IDIA). Date Accessed:
09-2021. Gaussian noise FITS image generator. (Date Accessed: 09-2021). https:
//github.com/idia-astro/image-generator#readme

[10] Dylan Fouché and Zainab Adjiet. 2020. Prototyping a Dataflow Implementation
of the CARTA System. (2020).

[11] Jeff Gilchrist. 2004. Parallel data compression with bzip2. In Proceedings of the
16th IASTED international conference on parallel and distributed computing and
systems, Vol. 16. Citeseer, 559–564.

[12] ilifu. Accessed: 09-2021. Cloud computing for data-intensive research. (Accessed:
09-2021).

[13] Wesley M Johnston, JR Paul Hanna, and Richard J Millar. 2004. Advances in
dataflow programming languages. ACM computing surveys (CSUR) 36, 1 (2004),
1–34.

[14] Jeff Magnum. Viewed:09-2021. How does a radio interferometer work? https:
//public.nrao.edu/ask/how-does-a-radio-interferometer-work/

[15] JP McMullin, BSDYWGKWaters, D Schiebel, W Young, K Golap, RA Shaw, F Hill,
and DJ Bell. 2007. Astronomical Data Analysis Software and Systems XVI. In
ASP Conf. Ser, Vol. 376. 127.

[16] William D Pence. 2010. CFITSIO: a FITS file subroutine library. Astrophysics
Source Code Library (2010), ascl–1010.

[17] Simon Perkins, Jacques Questiaux, Stephen Finniss, Robin Tyler, Sarah Blyth,
and Michelle M Kuttel. 2014. Scalable desktop visualisation of very large radio
astronomy data cubes. New Astronomy 30 (2014), 1–7.

[18] Danny C Price, Benjamin R Barsdell, and Lincoln J Greenhill. 2015. HDFITS:
Porting the FITS data model to HDF5. Astronomy and Computing 12 (2015),
212–220.

[19] Arpan Sen. 2010. A quick introduction to the Google C++ Testing Framework.
IBM DeveloperWorks 20 (2010), 1–10.

[20] Bjarne Stroustrup. 2003. The C++ Standard: Incorporating Technical Corrigen-
dum No. 1. British Standards Institute (2003).

[21] AR Taylor, A Comrie, and A Pińska. 2020. Development and application of an
HDF5 schema for SKA-scale image cube visualization. (2020).

[22] Casacore Team. 2019. casacore: Suite of C++ libraries for radio astronomy data
processing. Astrophysics Source Code Library (2019), ascl–1912.

[23] K-S Wang, A Comrie, P Harris, A Moraghan, S-C Hsu, A Pinska, C-C Chiang, H
Jan, R Simmonds, Q Pang, et al. 2020. CARTA: Cube Analysis and Rendering Tool
for Astronomy. In Astronomical Society of the Pacific Conference Series, Vol. 527.
213.

[24] Alwyn Wootten. 2003. The Atacama large millimeter array (ALMA). In Large
ground-based Telescopes, Vol. 4837. International Society for Optics and Photonics,
110–118.

https://carta-protobuf.readthedocs.io/en/latest/index.html
https://medium.com/cat-dev-urandom/simplifying-parallel-applications-for-c-an-example-parallel-bzip2-using-raftlib-with-performance-f69cc8f7f962
https://medium.com/cat-dev-urandom/simplifying-parallel-applications-for-c-an-example-parallel-bzip2-using-raftlib-with-performance-f69cc8f7f962
https://medium.com/cat-dev-urandom/simplifying-parallel-applications-for-c-an-example-parallel-bzip2-using-raftlib-with-performance-f69cc8f7f962
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/anguspearce/CompDaF
https://github.com/anguspearce/CompDaF
https://github.com/idia-astro/image-generator#readme
https://github.com/idia-astro/image-generator#readme
https://public.nrao.edu/ask/how-does-a-radio-interferometer-work/
https://public.nrao.edu/ask/how-does-a-radio-interferometer-work/


G. Thanathara

A RAFTLIB 2D RESULTS
———————————————-

Num of threads: 5
5000 5000 1
Raft Total Statistics Time: 0.19074s
Raft Read Image Time: 0.151634s
Raft Statistics Time: 0.039106s
Finsihed Raft stats through reading in raft
5000 5000 1
Raft Total Histogram Time: 0.20669s
Raft Read Image Time: 0.162172s
Raft Histogram Time: 0.044518s
Finsihed Raft Histo through reading in raft
———————————————-
Listening on port 9001
Num of threads: 5
10000 10000 1
Raft Total Statistics Time: 0.711865s
Raft Read Image Time: 0.613133s
Raft Statistics Time: 0.098732s
Finsihed Raft stats through reading in raft
10000 10000 1
Raft Total Histogram Time: 0.595846s
Raft Read Image Time: 0.5111s
Raft Histogram Time: 0.084746s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
15000 15000 1
Raft Total Statistics Time: 1.5191s
Raft Read Image Time: 1.29777s
Raft Statistics Time: 0.221328s
Finsihed Raft stats through reading in raft
15000 15000 1
Raft Total Histogram Time: 1.38236s
Raft Read Image Time: 1.1206s
Raft Histogram Time: 0.261762s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
20000 20000 1
Raft Total Statistics Time: 2.27217s
Raft Read Image Time: 1.95335s
Raft Statistics Time: 0.318817s
Finsihed Raft stats through reading in raft
20000 20000 1
Raft Total Histogram Time: 2.28987s
Raft Read Image Time: 1.90825s
Raft Histogram Time: 0.381619s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
25000 25000 1
Raft Total Statistics Time: 3.22784s
Raft Read Image Time: 2.68992s
Raft Statistics Time: 0.537919s

Finsihed Raft stats through reading in raft
25000 25000 1
Raft Total Histogram Time: 3.31974s
Raft Read Image Time: 2.76874s
Raft Histogram Time: 0.550996s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
30000 30000 1
Raft Total Statistics Time: 4.53414s
Raft Read Image Time: 3.71309s
Raft Statistics Time: 0.821047s
Finsihed Raft stats through reading in raft
30000 30000 1
Raft Total Histogram Time: 4.66182s
Raft Read Image Time: 3.8454s
Raft Histogram Time: 0.816415s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
35000 35000 1
Raft Total Statistics Time: 7.86157s
Raft Read Image Time: 6.64035s
Raft Statistics Time: 1.22122s
Finsihed Raft stats through reading in raft
35000 35000 1
Raft Total Histogram Time: 6.48464s
Raft Read Image Time: 5.42946s
Raft Histogram Time: 1.05519s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
40000 40000 1
Raft Total Statistics Time: 8.75448s
Raft Read Image Time: 7.59075s
Raft Statistics Time: 1.16373s
Finsihed Raft stats through reading in raft
40000 40000 1
Raft Total Histogram Time: 7.61724s
Raft Read Image Time: 6.46048s
Raft Histogram Time: 1.15677s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
45000 45000 1
Raft Total Statistics Time: 10.3881s
Raft Read Image Time: 8.89966s
Raft Statistics Time: 1.48842s
Finsihed Raft stats through reading in raft
45000 45000 1
Raft Total Histogram Time: 10.3552s
Raft Read Image Time: 8.76405s
Raft Histogram Time: 1.59119s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
50000 50000 1



Comparing Data Flow Platforms for Astronomy Visualisation

Raft Total Statistics Time: 11.9196s
Raft Read Image Time: 10.0642s
Raft Statistics Time: 1.85541s
Finsihed Raft stats through reading in raft
50000 50000 1
Raft Total Histogram Time: 12.7009s
Raft Read Image Time: 10.7464s
Raft Histogram Time: 1.95449s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
55000 55000 1
Raft Total Statistics Time: 15.3503s
Raft Read Image Time: 12.9755s
Raft Statistics Time: 2.37477s
Finsihed Raft stats through reading in raft
55000 55000 1
Raft Total Histogram Time: 15.1527s
Raft Read Image Time: 12.8952s
Raft Histogram Time: 2.25741s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
60000 60000 1
Raft Total Statistics Time: 17.9945s
Raft Read Image Time: 15.233s
Raft Statistics Time: 2.76152s
Finsihed Raft stats through reading in raft
60000 60000 1
Raft Total Histogram Time: 17.2349s
Raft Read Image Time: 14.5929s
Raft Histogram Time: 2.642s
Finsihed Raft Histo through reading in raft

B RAFTLIB 3D RESULTS
———————————————-

Num of threads: 5
250 250 250
Raft Total Statistics Time: 0.339793s
Raft Read Image Time: 0.217901s
Raft Statistics Time: 0.121892s
Finsihed Raft stats through reading in raft
250 250 250
Raft Total Histogram Time: 0.399834s
Raft Read Image Time: 0.23055s
Raft Histogram Time: 0.169284s
Finsihed Raft Histo through reading in raft
———————————————-
Num of threads: 5
500 500 250
Raft Total Statistics Time: 0.955669s
Raft Read Image Time: 0.739118s
Raft Statistics Time: 0.216551s
Finsihed Raft stats through reading in raft
500 500 250
Raft Total Histogram Time: 1.22038s

Raft Read Image Time: 0.859472s
Raft Histogram Time: 0.360904s
Finsihed Raft Histo through reading in raft
———————————————–
Num of threads: 5
750 750 250
Raft Total Statistics Time: 2.52638s
Raft Read Image Time: 1.89342s
Raft Statistics Time: 0.632957s
Finsihed Raft stats through reading in raft
750 750 250
Raft Total Histogram Time: 2.64509s
Raft Read Image Time: 1.94912s
Raft Histogram Time: 0.695975s
———————————————–
Num of threads: 5
1000 1000 250
Raft Total Statistics Time: 3.27418s
Raft Read Image Time: 2.59799s
Raft Statistics Time: 0.676194s
Finsihed Raft stats through reading in raft
1000 1000 250
Raft Total Histogram Time: 3.76571s
Raft Read Image Time: 3.03912s
Raft Histogram Time: 0.726592s
Finsihed Raft Histo through reading in raft
———————————————–
Num of threads: 5
1250 1250 250
Raft Total Statistics Time: 5.1775s
Raft Read Image Time: 4.26887s
Raft Statistics Time: 0.908626s
Finsihed Raft stats through reading in raft
1250 1250 250
Raft Total Histogram Time: 4.43343s
Raft Read Image Time: 3.73044s
Raft Histogram Time: 0.702986s
————————————————
Num of threads: 5
1500 1500 250
Raft Total Statistics Time: 7.96052s
Raft Read Image Time: 6.68656s
Raft Statistics Time: 1.27396s
Finsihed Raft stats through reading in raft
1500 1500 250
Raft Total Histogram Time: 6.11452s
Raft Read Image Time: 5.25839s
Raft Histogram Time: 0.85613s
Finsihed Raft Histo through reading in raft
———————————————–
Num of threads: 5
1750 1750 250
Raft Total Statistics Time: 9.22147s
Raft Read Image Time: 7.89963s
Raft Statistics Time: 1.32184s
Finsihed Raft stats through reading in raft
1750 1750 250



G. Thanathara

Raft Total Histogram Time: 9.69937s
Raft Read Image Time: 8.17843s
Raft Histogram Time: 1.52095s
———————————————–
Num of threads: 5
2000 2000 250
Raft Total Statistics Time: 9.84035s
Raft Read Image Time: 8.54186s
Raft Statistics Time: 1.29849s
Finsihed Raft stats through reading in raft
2000 2000 250
Raft Total Histogram Time: 10.9156s
Raft Read Image Time: 8.99387s
Raft Histogram Time: 1.92173s
Finsihed Raft Histo through reading in raft
———————————————–
Num of threads: 5
2250 2250 250
Raft Total Statistics Time: 11.1045s
Raft Read Image Time: 9.33453s
Raft Statistics Time: 1.76996s
Finsihed Raft stats through reading in raft
2250 2250 250
Raft Total Histogram Time: 12.0754s
Raft Read Image Time: 10.0901s
Raft Histogram Time: 1.98525s
———————————————–
Num of threads: 5
2500 2500 250
Raft Total Statistics Time: 12.282s
Raft Read Image Time: 10.4811s
Raft Statistics Time: 1.8009s
Finsihed Raft stats through reading in raft
2500 2500 250
Raft Total Histogram Time: 14.4696s
Raft Read Image Time: 11.9734s
Raft Histogram Time: 2.49618s
Finsihed Raft Histo through reading in raft
———————————————–
Num of threads: 5
2750 2750 250
Raft Total Statistics Time: 16.1832s
Raft Read Image Time: 13.4978s
Raft Statistics Time: 2.68544s
Finsihed Raft stats through reading in raft
2750 2750 250
Raft Total Histogram Time: 17.7099s
Raft Read Image Time: 14.4596s
Raft Histogram Time: 3.25037s
———————————————–
Listening on port 9001 Num of threads: 5
3000 3000 250
Raft Total Statistics Time: 19.6074s
Raft Read Image Time: 16.341s
Raft Statistics Time: 3.26643s
Finsihed Raft stats through reading in raft
3000 3000 250

Raft Total Histogram Time: 20.0234s
Raft Read Image Time: 16.7369s
Raft Histogram Time: 3.28653s
Finsihed Raft Histo through reading in raft
———————————————–
Listening on port 9001
Num of threads: 5
3250 3250 250
Raft Total Statistics Time: 21.6476s
Raft Read Image Time: 18.1115s
Raft Statistics Time: 3.53609s
Finsihed Raft stats through reading in raft
3250 3250 250
Raft Total Histogram Time: 22.1455s
Raft Read Image Time: 18.4474s
Raft Histogram Time: 3.69814s
———————————————–
Listening on port 9001
Num of threads: 5
3500 3500 250
Raft Total Statistics Time: 23.1142s
Raft Read Image Time: 18.59161s
Raft Statistics Time: 4.52259
Finsihed Raft stats through reading in raft
3500 3500 250
Raft Total Histogram Time: 24s
Raft Read Image Time: 18.05489
Raft Histogram Time: 5.94511s
Finsihed Raft Histo through reading in raft


	Abstract
	1 Introduction
	2 Background AND Related Work
	2.1 Stream Processing and Raftlib
	2.2 Simplifying Parallelisation using Raftlib
	2.3 DASK Implementation

	3 Design and Implementation
	3.1 Architecture
	3.2 Features
	3.3 Region Statistics
	3.4 Channel Histogram
	3.5 Cube Histogram
	3.6 Parallel Reading

	4 Testing and Evaluation
	4.1 Testing Environment
	4.2 Testing Features
	4.3 Testing For Efficacy
	4.4 Testing for Efficiency

	5 Results and Discussion
	5.1 Statistics Histogram
	5.2 Channel Histogram
	5.3 Cube Histogram
	5.4 Final Discussion and Future Work

	6 Conclusions
	Acknowledgments
	References
	A Raftlib 2D Results
	B Raftlib 3D Results

