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ABSTRACT
Image data collected from radio astronomy arrays has been in-
creasing in size at an exponential rate due to improvements in
technology, bandwidth, and the infrastructure of the arrays. This
has caused a rise in the need to find better methods and structures
for the reduction and processing of radio astronomy image data.
The CARTA system is a tool used to process this image data, and
new methods are being researched to deal with this exponential
rise in data size. The dataflow model is a possible solution to this
issue, with a scalable architecture that can run efficiently across
massively distributed clusters, while eliminating the issues inherent
in parallel programming.
This paper presents a prototype that uses a dataflow graph execu-
tion engine, DALiuGE, to implement certain features of the CARTA
backend. The prototype, which includes a client-server architecture
to mimic the CARTA system, is checked for numerical accuracy
and subjected to efficiency testing.
The implementation of the prototype is detailed and the results of
testing are shown, analysed, and discussed. The DALiuGE proto-
type shows promising results, outperforming the CARTA backend
in certain features and achieving satisfactory results in others.
The results and discussion therefore show that the dataflow model
is a plausible step forward in redesigning the CARTA backend func-
tionality. Moreover, DALiuGE is shown to be incredibly flexible,
efficient, and straightforward to integrate. We conclude that DALi-
uGE is worthwhile to consider as a dataflow framework, and meets
the requirements for our use case.

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures; Parallel architectures.
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1 INTRODUCTION
The Cube Analysis and Rendering Tool for Astronomy (CARTA)
[24] is an image visualization and analysis tool designed for the
ALMA (Atacama Large Millimeter Array), VLA (Very Large Ar-
ray), SKA (Square Kilometer Array) pathfinders, and the ngVLA
(Next Generation Very Large Array). CARTA was developed and
is maintained by the Inter-University Institute for Data-Intensive
Astronomy (IDIA)[15]. It currently employs a multi-threaded C++
backend to process image data. This data is mainly in the FITS file
format, the de facto format for working with image data from a data
reduction pipeline. However, the data that these arrays produce
has been increasing exponentially in size and will continue to do
so with improvements and expansions to the current arrays. To be

able to visualize and analyze this data efficiently there needs to be
a change in the current methods of processing it, due to the fact
that the current methods can be difficult to scale and consequently
maintain at this scale.
The data flow model is a model that allows for implicit, fine-grained
parallelism [20] on large amounts of data by visualizing workflow
as the execution of a Directed Acylic Graph (DAG). These specific
characteristics of the data flow model remove the need for a devel-
oper to worry about concurrency and parallelism issues, allowing
them to focus on the processing, development, and optimization
of sequential algorithms. This is of huge importance since as data
scales, so must the distribution of data processing, which proves to
be a nuisance should issues concerning the integrity of data arise.
This paper presents a prototype using the data flow model, imple-
mented with the Data Activated Liu Graph Engine (DALiuGE) [29],
a workflow graph execution framework built specifically for the
reduction of interferometric radio astronomy data sets from the
SKA. DALiuGE was developed and is maintained by the Data Inten-
sive Astronomy team (DIA) at the International Centre for Radio
Astronomy Research (ICRAR) [14], located in Western Australia.
While it was built for astronomically large data sets and intended
to run on large distributed clusters, it can be scaled down to even
run locally on a single computer, making it an incredibly versatile
implementation of the data flow model.
This paper will detail the design and methods used to build the
prototype as well as having a focus on the reasons as to why DALi-
uGE is a viable option to replace the current data processing. The
conclusions reached will be drawn from both the results of the
prototype and the analysis of DALiuGE as a tool to implement the
data flow model for our use case.
The aim of this prototype and research project is to use a data
flow framework, in this case DALiuGE, to produce numerically
equivalent results to CARTA’s current backend and show that the
framework can be more efficient and/or scalable in comparison.
The research hypothesis is that DALiuGE is a powerful tool that
is both flexible and scalable, and has the propensity to be the ideal
framework to replace CARTA’s backend. However, the system can
only be as good as the underlying libraries and algorithms allow
for.
This paper first discusses background work about the data flow
model, DALiuGE, and Dask [6], followed by an explanation of the
components within DALiuGE. The design and implementation of
the prototype will be detailed, leading in to the testing methodology.
Finally results will be shown with a full discussion and analysis
from where conclusions will be drawn and discussed.

2 RELATEDWORK
2.0.1 Data Flow. Nowadays processing power comes from making
use of multiple cores and threads to run computations in parallel.
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However parallelism brings forth further issues such as race condi-
tions and deadlock, forcing developers to spend a lot of time and
be very meticulous when executing operations in parallel. As the
world of data gets bigger, the methods to process this data must be
smarter.
Jack Dennis [7] created the first idea of a data flow model in 1974,
based on the vision to create “a highly parallel computer system in
which the execution of many program fragments is carried forward
simultaneously”. This architecture or model uses a DAG called a
“task graph”, which treats functions as nodes on the graph that
will execute as soon as they receive input from the prerequisite
functions.
A feature that stream processing brings is the compartmentalization
of state within each compute unit (node), such as a thread. This
means that each compute unit contains its own state and does not
have to rely on any external information to know when to run, be-
sides waiting for the prerequisite function to complete. This heavily
simplifies the parallelization logic for the programmer and allows
the runtime to focus on each compute unit separately while opti-
mizing globally [2]. This removal of the programmer’s concern and
involvement in parallelization issues leaves more time and makes
it simpler to optimize the individual parts of the program that run
sequentially. An added benefit of this feature is that it encourages
programmers to split their programs into logical partitions, which
further helps with the optimization process.
Therefore, implementations of the data flow model contain some
form of separation between application and parallelization logic,
generally providing software alongside that optimizes the overall
flow of the graph. Many implementations also use machine learning
to be able to further optimize the work flow.

2.0.2 DALiuGE. DALiuGE allows data to trigger events, it inte-
grates data lifecycle management within the data processing frame-
work, and it explicitly decouples the logical view of a problem from
its physical realization [3]. This explicit decoupling comes to life
through the three main components of DALiuGE: EAGLE [13], the
translator, and the engine. It was designed specifically for radio
telescope image data processing, and so has been designed to allow
stakeholders such as telescope operators, pipeline developers, and
astronomers to optimize the data processing at multiple levels in a
homogeneous manner [28].
DALiuGE has some advantage over other frameworks because it
was first put through a test case on the Lianhe II supercomputer,
with satisfactory results [18], and following that was used in two
real-world use cases. The first of the real-world use cases used
data from the Cosmos HI Large Extragalactic Survey (CHILES) [9]
that runs at the VLA, and the second used data from the Mingantu
Ultrawide Spectral Radioheliograph (MUSER) [26]. In both cases
DALiuGE was mainly used for driving the data reduction pipeline.
Overall, the results were satisfactory on both the scientific side
and with regards to data processing performance. Moreover, the
pipeline that was built based on DALiuGE was found to be simple
to develop by re-using existing, mature pipeline software modules.
Finally, the team at ICRAR are continuing working on DALiuGE to
support it up to the levels of SKA Phase 2, which could bring about
data transfers of ten times SKA1. It therefore promises continual
improvements to the entire system, ensuring longevity.

2.0.3 DASK. Fouché et al. [11] designed a prototype for the CARTA
system using a flexible parallel computing library called Dask [6]
for Python. In his paper he achieved overall fair results with Dask
in comparison to CARTA, both in local and distributed systems.
He concluded that it was possible to adapt existing dataflow tools
or systems to integrate with CARTA and showed the simplicity of
Dask in performing complex operations.
However even with Dask seemingly being very flexible it still has
its own issues. For example, developers mainly have to rely on the
underlying optimization that Dask performs instead of being able
to control optimization at lower levels. The results that Fouché et
al. show, while not slow, still under-perform slightly in comparison
to CARTA. This seems to represent a possible bottleneck where
a developer could be left with slower computations without the
means to improve performance.
DALiuGE actually ships with a Dask emulation layer that provides
support for the delayed() and compute() methods that Dask uses to
create its graphs. Using dlg.delayed() (dlg being DALiuGE) allows
users to write code just as they would for Dask, but instead run the
task graph under DALiuGE. Currently there are no performance
comparisons but I believe that it could be a plausible alternative to
using Dask.

3 DALIUGE SYSTEM
This section describes the main components of DALiuGE as a pre-
cursor to the design and implementation of the prototype. DALiuGE
has full documentation available online [8].

3.1 Drops
DALiuGE makes use of software objects called Drops [27], which
were specifically created for the project to tackle the problems of
data distribution on thousands of compute nodes. They are an ab-
stract class that forms the nodes and edges of a DAG, and can carry
either data (DataDrops) or applications (AppDrops). This is how
they have fulfilled the idea of a Data Driven processing environ-
ment, with each Drop determining by itself when it should execute
its own methods based on its type of class and the inputs provided.
The only external control on each Drop is a data lifecycle manage-
ment tool within the execution engine, which tracks each Drop and
will migrate or delete the Drop automatically when required [29].

3.2 EAGLE
The Editor for the Advanced Graph Language Environment (EAGLE)
[14] is the visual component of the Advanced Graph Language, and
while it couples with DALiuGE, it is completely separate and only
requires DALiuGE for the translation and execution of the graphs
that it creates.
EAGLE uses components to create graphs that represent complex
processing pipelines. These components are generated by wrapping
the code that they represent in specialised Doxygen [19] comments
and generating an XML output. This XML output can then be
combined and converted into a .palette file using a Python script
provided by DALiuGE. This palette represents a set of components
that can be loaded into EAGLE and used to build a graph. These
components and palettes are described using JSON, which has the
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advantage of being readable by humans and therefore can techni-
cally be written by humans, although not advised.
EAGLE uses a simple drag-and-drop interface where components
represent applications as nodes on the graph, with the edges con-
necting components describing the flow of data. It provides various
types of application components such as Python, Bash shell and
Dynamic Library applications. It also supports a variety of data
components, with the most common being Memory and File (RAM
and Disk).
One of EAGLE’s main advantages is to be able to reuse code with
immense ease, with it being as simple as loading a palette and drag-
ging a component into the editor. This also enforces the idea of
creating components that are similar to templates, allowing a single
component to be used in different scenarios or with different data
types.

Figure 1: Workflow from the EAGLE editor

3.3 DALiuGE Translator
The translator "unrolls" the logical graph, identifying nodes on
the graph and creating all the application or data drops, as well as
establishing directed edges that link all the drops together. It also
shows a visualization of the Physical Graph Template so that the
user can inspect the physical realisation of their logical graph for
correctness. The translator also maps each node (Drop) to specific
resources, creating a Physical Graph that contains all the informa-
tion required for the execution engine to deploy it.
When submitting a Logical Graph to the translator there are a va-
riety of algorithms for translating said graph. These algorithms
have different focuses based on what the user wants to accomplish.
For example, they can choose to minimise data movement whilst
subject to load balancing or instead minimize execution time whilst
subject to each partition’s degree of parallelism (DoP). Some of
these algorithms are expensive to run, especially on larger graphs,
and they are meant to be used when the developer can set the
"Execution Time" and "Data Volume" parameters for the AppDrops
and DataDrops respectively.

3.4 DALiuGE Engine
The DALiuGE engine primarily uses Drop Managers, which receive
the Physical Graph and coordinate to deploy all the Drops described
and mapped by the graph. For each node there is a Node Drop Man-
ager, which are grouped into a "data island" and managed by a Data
Island Manager. If the graph is too large to be managed by one Data
Island Manager, the engine will create more of them which will
then be managed by a Master Drop Manager.
Each manager in the system exposes a REST Application Program-
ming Interface (API) [21] which can be used by external users to
interact with, deploy, and manage graph execution.
All the engine requires to deploy a session is a Physical Graph and
access to the code described by the components in said graph.

3.5 Workflow
Figure 1 describes the entire process from creating application com-
ponent code to executing the workflow described in the form of
a graph in EAGLE. A graph begins as a Logical Graph Template
which becomes a Logical Graph once the exposed component pa-
rameters have been filled in. The Logical Graph is then translated
and becomes a Physical Graph Template after creating all Drops and
directed edges between Drops. The graph is then partitioned per the
algorithm used, subjecting the graph to specific constraints such as
minimum data movement or execution time. This step produces a
Physical Graph which can be deployed and run by the DALiuGE
engine.
Examples of these graphs can be found in the appendix.

4 DESIGN AND IMPLEMENTATION
4.1 Architecture
4.1.1 Client-Server Model. To ensure a fair and controlled test envi-
ronment, a Python client was built to emulate CARTA’s client with
only the features that the prototype implemented. This allows both
the DALiuGE prototype and CARTA backend to run on the same
hardware and interact with the same client. Therefore, a Python
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server was also needed to communicate with the client and sub-
sequently call the correct functions in DALiuGE. Communication
between the client and server uses CARTA’s protocol buffers [4]
that are transferred using Python websockets [1] over the Transfer
Control Protocol. Figure 2 shows the sequence of events to establish

Figure 2: Sequence diagram to start a connection in CARTA

a connection between the CARTA server and a client. Once this ini-
tial handshake is performed, the client has a consistent connection
with the server and can select a file to open. CARTA’s Interface
Control Document (ICD) [5] contains all the necessary information
for sending, receiving, and interacting with the protocol buffers.
Fouché et al. [11] implemented classes to create and read these
protocol buffer messages in Python, and so their message_header
and message_provider classes were used to streamline the process.

4.1.2 DALiuGE. As explained previously, DALiuGE supportsmulti-
ple types of application components with the simplest being Python
applications and Bash Shell commands. Python was chosen as the
language of choice since DALiuGE is mainly written in Python,
allowing for the easiest interaction with its API.
DALiuGE has a variety of ways in which to translate, deploy, and
manage graphs. While it can deploy graphs directly via the com-
mand line or manually through the EAGLE interface, a choice was
made to use the RESTful API [21] that is exposed by whichever type
of Drop Manager is being used in the execution engine. These calls
can be made with a few lines of Python code, so it was an obvious
choice for simple integration between the engine and server.

4.2 Feature Implementation
While Python is incredibly simple and versatile, it suffers in effi-
ciency due to the same factors that make it so. When working with
any large amount of data, a base Python implementation would
not only be too slow to use but also use up much more memory
than necessary. This led to the use of Python’s well-known NumPy
[25] and Numba [17] libraries to provide an immense speed-up
performing these calculations.
We also use the AstroPy library with its support for FITS file I/O
(Input/Output). AstroPy already returns the image data in a NumPy
ndarray, which makes it perfect for working with NumPy and
Numba.
Both of the features were calculated over the entire FITS image

range, to provide us with a case for features that will be computed
often and over a large amount of data. Both features also were only
used on 2D FITS files.

4.2.1 Basic Statistics. The first feature is the basic statistics. This
includes the min, max, sum, mean, standard deviation, and the
number of pixels in the file. When calculating these it must also be
taken into account that there can be NaN values (Not-a-Number)
that must be disregarded. NumPy provides all of these methods,
even providing the same methods but excluding NaN values, e.g.
np.sum() vs np.nansum().

4.2.2 RegionHistogram. The second feature is the region histogram.
To calculate the number of bins that the histogram will generate
we used CARTA’s default method:

𝑏𝑖𝑛𝑠 =𝑚𝑎𝑥 (
√
𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡, 2) (1)

NumPy again does provide a method for computing a histogram,
however the efficiency falls off fairly rapidly when dealing with
large amounts of data. Numba, even though it has a compilation
overhead at runtime, becomes faster thanks to it using various
methods to speed up loops as well as caching this compilation so
that it does not have to compile the method each call.

4.3 System Implementation Details

Figure 3: Sequence diagram to open a file in CARTA

4.3.1 Computation Order. Figure 3 shows the sequence of events
for opening a file in the CARTA system. Once a client has connected,
registered, and been assigned a session, they can open a file. When
a file is loaded, the CARTA backend automatically computes and
sends the region histogram of the entire image to the client. This is
done by first running through the file once to load it into cache and
calculating the basic statistics. Since the file has already been loaded
into the image cache, the histogram calculation can be performed
very quickly by using that cache. A choice was made to mimic
this flow of events by calculating the statistics and then histogram
immediately after a file is opened.

4.3.2 Component Classes. To use the EAGLE editor with our code
we needed to define the Doxygen comments wrapping a class based
on the inputs, outputs, and purpose of the component it represents.
Each class defines a single component and will require different
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methods to be overwritten depending on the type of base ’Drop’
class they extend. In our case we extended a class called Barrier-
AppDROP, which meant that each class only needed a single run()
method which would only be called once every input to the class
had completed. It is important to note that this class represents the
simplest version of batch processing, whereas to implement stream
processing you need only extend the AppDROP class and define a
streaming compatible application.

To perform the statistics and histogram computation, six classes
were created to be usedwithin DALiuGE as application components:
SplitStatsApp, ComputeStatsApp,GatherStatsApp, SplitHistApp, Com-
puteHistApp, and GatherHistApp. The split and gather classes are
used within EAGLE in scatter and gather constructs respectively.
These constructs generally work in tandem, with scatter containing
a ’Number of Splits’ parameter and gather containing a ’Number
of Inputs’ parameter. The scatter’s job is to replicate the middle
node by the number of splits parameter, while the gather receives
inputs from however many inputs it has. Figure 4 shows one scatter

Figure 4: Physical Graph of Scatter and Gather

and one gather construct in a physical graph, namely SplitStatsApp
(top) and GatherStatsApp (bottom). Setting the number of splits and
number of inputs parameters each to four yields this graph.

The SplitStatsApp class takes in a file name parameter as speci-
fied by the client when they choose the file. It computes a set of
ranges over the file data, based on the file dimensions and the num-
ber of outputs it has, and passes a unique range to each output node.
The nodes in between the scatter and gather applications then each
receive a unique range, using it to read only the section of the file

that they have been assigned. These nodes, each an instance of
ComputeStatsApp, compute the statistics over their unique range of
data, after which they pass the results downstream to the gather
application to be compared and combined to a final output. Per-
forming the reading and computations in this way not only allows
for reading the FITS file in parallel but also removes the need to
physically send the file data downstream to each node, increasing
efficiency and decreasing memory usage.
Once the statistics have been gathered, GatherStatsApp sends the
min and max to SplitHistApp to once again split the data in ranges,
allowing ComputeHistApp to compute the histogram over their
unique ranges and finally combining each histogram in Gather-
HistApp.
It should be noted that each app passes a variety of data down-
stream, depending on the needs of the downstream nodes. This
data can be put in a normal Python list, serialised using the pickle
library, and sent to whichever output requires it.

4.3.3 Graphs and GraphLoader. The graphs that were used were
created manually in EAGLE, using a palette of components that
was created using Doxygen comments wrapping the Python classes
describing components, as described in section 3.2. The graphs were
then exported as Physical Graphs in JSON format which can be
loaded into Python and passed into the engine via the REST calls.
The GraphLoader class was used for this purpose. It receives a file
name and graph name as arguments and attempts to load the graph
file using the JSON library. Since the graphwe are using is a physical
graph, it has already been mapped to specific IP addresses and been
instantiated with the file name when it was translated manually
through EAGLE. This can be mitigated by translating the logical
graph using code by sending it to an instance of the translator, but
that adds another dependency which was unnecessary for our case.
To overcome this you are able to iterate through the loaded JSON
object, find the Drop definition of the Drop that you wish to change,
and manually change the JSON definition.
Following that, as long as the DALiuGE engine is running, the
GraphLoader object connects to a Node Manager on localhost with
a specified port. To deploy a physical graph, the only methods
that need to be called on the Node Manager are createSession(),
addGraphSpec(), and deploySession().

5 TESTING
5.1 Test Environment
The testing environment consisted of two Linux Virtual Machines
(VM’s) running Ubuntu 20.04.03 LTS. Each virtual machine had an
8 core CPU and 64GB’s of RAM. These VM’s were provided by IDIA
and are hosted on the ilifu HPC cluster [16].

5.2 Testing for Accuracy
Testing was required to ensure that the results from the prototype
and CARTA were numerically equivalent. This involved computing
the statistics and histogram over the same file using the DALiuGE
prototype and CARTA system, and asserting that the results are
within a certain margin of error of each other. The outputs of
multiple files were compared and cross-checked for accuracy.
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Figure 5: Package diagram of the prototype backend

5.3 Testing for Efficiency
Efficiency, in our case, encapsulates both the speed of the functions
as well as the scalability of the framework. Scalability is especially
important because it ensures that greater data sizes can still be han-
dled by expanding the processing horizontally. This can be difficult
to test as it requires being able to expand the prototype to many
multiple compute nodes.

We tested eleven FITS files that were generated randomly using
a tool provided by IDIA [10]. These eleven files ranged from a
5000x5000 pixel file to a 55000x55000 pixel file, with file size rang-
ing from 100MB to 12GB.
For each test run we cleared the file system cache completely,
loaded the file and ran the statistics and histogram on either the
CARTA backend or the prototype. For DALiuGE the engine had to
be restarted each test run after clearing the cache.
CARTA’s test results are taken from their performance logging,
which shows the time taken to load the image into cache (including
the basic statistics calculations) and time taken to compute the
histogram.
The prototype’s timing begins at the beginning of the run() method
in each scatter, and ends when the respective gather has combined
the output into a final result. These results are then encoded and
sent through a specific port to a File Drop to be written to disk. This
is seen in both the logical graph and physical graph in the appendix.

Each file was tested using multiple different parameters, namely
the physical graph (controlling the multi-processing), and the num-
ber of splits inside each process. The number of splits inside each
process breaks the data into multiple pieces again, allowing the
compute nodes to perform calculations on smaller subsets of their
own unique range of data. This not only increases the efficiency of
specific calculations but also means that only a certain amount of
overall data will be loaded into memory at a time.
For example, an inside split of 4 means that each compute node only
loads a quarter of their unique range of data at a time, meaning that

overall only a quarter of the entire file will be loaded into memory
at any given point.

6 RESULTS AND DISCUSSION
Figure 6 shows the results of the statistics computation while Figure
7 shows the results of the region histogram computation. The table
with these results can be found in the appendix, with the colours
corresponding between the table and graphs.

As stated previously and shown in the graphs in the appendix,
the prototype first calculates statistics while reading the file for
the first time, and then calculates the histogram when reading the
file a second time. This means that the first read, which includes
calculating the statistics, does not use any cache whatsoever. The
second read, including the histogram, now has the file stored in
cache but still must read once more from the disk and not directly
from memory.
In each graph the blue bars represent the times for the prototype,
all using the same graph file and parameters. In this case, the graph
that was used contained 16 splits for both the statistics and his-
togram, with each node splitting their unique range of data into 8
pieces. This obviously does not show the true performance, and is
instead used as a control. The red bars represent the optimal times
for the statistics or histogram. Optimal here simply means that
this was the lowest time that was recorded during testing. These
optimal times come from a variety of graphs and parameters that
were tried during testing, and still do not represent the most opti-
mal solution, seeing as there are a variety of factors and too many
possible parameter combinations to perform this manually.
The physical difference between using 4 and 8 splits can be seen
on pages 2 and 3 in appendix A.

6.1 Statistics

Figure 6: Region Statistics

As noted, the times displayed here are using no cache whatso-
ever. The time used for CARTA is the time taken to load the image
into cache and calculate basic statistics, which is a near exact com-
parison to the prototype.
As shown in the graph, both the control and optimal times far
outperform CARTA’s time. On average we see around a 7 times
speedup for the control, with outliers such as the optimal time for
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the 100 MegaPixel file (10000x10000 pixels) achieving a 26 times
speedup.
These stark differences in times can be attributed to the parallel
reading performed by the prototype. Each compute node reads
their unique 1/16th slice of the file while the other nodes do the
same. This drastically increases performance and when compared
to CARTA, which reads mostly sequentially, the difference is clear.
Something not shown here is the memory usage. The DALiuGE
prototype only used around 8 to 10 gigabytes of memory for the
largest file we tested, with CARTA reaching around 14 gigabytes.
However, CARTA used substantially more memory for smaller files
in comparison to DALiuGE, and its to be noted that the prototype
can easily be adapted to use more or less memory albeit at the
possible loss of performance.

6.2 Histogram

Figure 7: Region Histogram

Tomake sure that the comparison for the histogram computation
was fair, the times for the prototype to read the file a second time
and calculate the histogram were compared against the CARTA
backend reading the file from cache and then performing the his-
togram. This does not represent the flow of CARTA but provides a
fair comparison. Using this comparison shows that CARTA outper-
forms the prototype, but only by a few seconds at best and around
a tenth of a second at worst.
The explanation as to why the prototype falls short here is fairly
straightforward. Numba was used to perform the histogram com-
putation. Numba can be very fast and efficient when working with
larger arrays but it also has a compilation overhead. While it still
proved to be faster than using NumPy for the histogram, each com-
pute node had to compile the function once at runtime (Numba uses
Just-In-Time compilation), which technically brings more overhead
with each split. Using Numba more efficiently for the histogram
would require more testing to figure out a balance between the size
of the data with regards to the efficiency of the function and the
amount of memory used.

6.3 Distributed Computing
Part of the aims of this project included being able to distribute
the system onto multiple nodes. Due to some issues surrounding

the virtual machines, results of this were not achieved. However,
the current system can be completely distributed without a single
change in the code as long as the FITS file can be accessed from
each virtual machine or node.
Distributing the system only requires the deployment version of
the engine to be built on each node which, when run, will each
start up a Node Manager on their respective nodes. Following that
a Data Island Manager needs to be started on one of these nodes,
which will be fed the IP addresses of the other nodes, creating a
distributed system.
Finally, the graphs used must be translated using the metis algo-
rithm, which has parameters indicating the number of nodes and
number of islands, with a feature to balance the load on each node.

6.4 Possible Changes and Thoughts
While Python was simple to work with and had some advantages in
that sense, it should not be used if straight efficiency is key. C and
C++ are supported languages in DALiuGE through the Dynamic
Library component. Multiple systems that are using DALiuGE in
production currently make use of C++ application components.
Since CARTA’s backend is built in C++ it makes sense to use it. It is
more than likely that a C++ implementation, using the same archi-
tecture and graphs, would be faster given its underlying efficiency
and lower-level control.
DALiuGE has a remarkably extensive list of supported application
and data components. This list encapsulates a variety of methods
for running a large number of different applications through DALi-
uGE. Components such as the Message Passing Interface (MPI)[12]
component could be taken advantage of when dealing with par-
allel computing, while the Docker component allows any Docker
container [22] to be run through DALiuGE. These showcase the
flexibility of the system in comparison to most other models which
do not nearly have the same functionality.

7 CONCLUSIONS
We implemented a software prototype in Python using DALiuGE,
a data flow graph execution framework designed to support large
scale distributed computing. We built a set of components that can
be used to create a graph describing the workflow of these compo-
nents.
We implemented a client-server model in Python that mimics cer-
tain functionality from the CARTA system, with the client being
able to interact with both the Python server and CARTA’s backend.

The results from testing show that DALiuGE outperforms CARTA
heavily when reading a file for the first time. The statistics and
histogram results, while showing very different comparisons, are
entirely explainable and prove a case as to why DALiuGE is worth-
while to use as a data flow framework.
Pulling from the related work done on DALiuGE and the under-
standing of how the distribution works, we can conclude that DAL-
iuGE is a robust and massively scalable implementation of the data
flow or work flow model. In contrast to other systems such as Dask
or RaftLib [2], it allows developers to fully utilise the data flow
system while taking advantage of an extensive number of other
libraries or systems. This being said, DALiuGE is only as good as
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the underlying systems that it makes use of.
We can also conclude that while Python performed admirably in
the tests, the histogram computation does show the shortcoming
of using Python libraries, introducing either an overhead or only
providing support for specific functionality.
We therefore find that DALiuGE is a suitable framework that could
be used in the CARTA system. For this, we recommend that further
testing be done using C or C++ application components to ensure
the highest levels of efficiency and memory management.

8 FUTUREWORK
DALiuGE was just fully released and is currently in version 1.0.0.
It is currently receiving big overhauls and optimizations in many
areas, while updating support for new components and systems.
Notably, support for using Ray [23] to implement distributed com-
puting is being worked on. Ray, a framework for scaling Python
workloads, should make distribution both easier and more efficient.
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A GRAPHS

1. Logical Graph in the EAGLE editor
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2. Physical Graph with four splits and four inputs
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3. The same Physical Graph as above, but with the splits and inputs set to 8
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4. Visualisation of a graph being executed
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B RESULTS

1. Table of results from region statistics and region histogram

2. Region Statistics Chart
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3. Region Histogram Chart
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